
CSE 143 N

N-17/17/00

CSE 143

Dynamic Memory In Classes
[Chapter 4, p 156-157, 172-177]

N-27/17/00

Remember Class Vector?
class Vector {
public:

Vector ();

bool isEmpty();

int length ();
void vectorInsert (int newPosition, Item newItem);

Item vectorDelete (int position);

Item vectorRetrieve (int position);

...

};

N-37/17/00

Many Ways to Implement
•Version 1: With fixed length arrays

•Very efficient to access individual elements

•Limited in size, flexibility

•Version 2: With a linked list
•Very flexible in size
• Inefficient to access individual elements
Have to chase pointers down the list

•Here’s a third way:
•Use an array (for efficient access)

•Make the array itself "dynamic"
Reallocate a larger array as needed to grow

N-47/17/00

Vector Implementation
class Vector {

public:

// constructors and other methods, as before

private:

Item *Items; // items[0..capacity] is space allocated for
// this vector

int size; // items are stored in Items[0..size-1]

int capacity; //current maximum array size

// might need additional private helper functions

};

N-57/17/00

Draw the picture!

N-67/17/00

Vector Constructor
Vector::Vector() {

// set up private variables

capacity = DEFAULT_CAPACITY;

size = 0;

// allocate memory

items = new Item[capacity];

// what goes here?

}

Except for this, the public methods can be the same as for
the fixed array implementation.

Exception: insert needs to insure there is room to add a new
item.

CSE 143 N

N-77/17/00

Useful Private Functions
class Vector {

public:

// constructors and other methods

private:
// data members here...

// ensure the Vector can hold at least n elements

void ensureCapacity(int n);

// set size of the Vector to n elements

void growArray(int n);

};

N-87/17/00

ensureCapacity()
// ensure that Vector can hold at least n
// elements
void Vector::ensureCapacity(int n) {

// return if existing capacity is ok
if (capacity >= n)

return;

// out of space: double capacity
int newCapacity = capacity * 2;
if (newCapacity < n)

newCapacity = n;

// grow the array
growArray(newCapacity);

}

N-97/17/00

growArray()
// Set size of vector to newCapacity

void Vector::growArray(int newCapacity) {

Item *newItems = new Item[newCapacity];

if(newItems == NULL){ … } //handle error

for (int i = 0; i < size; ++i)

newItems[i] = items[i]; //copy items

...

items = newItems;

capacity = newCapacity;

}

Have we forgotten anything?
N-107/17/00

Now insert is easy!
// insert newItem at newPosition in Vector

void Vector::vectorInsert(int newPosition,

Item newItem) {

// make room

ensureCapacity(size+1);

// shift data over

for (int i=size; i > newPosition; --i)

items[i] = items[i-1];

// store the item

size++;

items[newPosition] = newItem;

}

N-117/17/00

Issues with Dynamic Memory

•Using dynamic memory in classes raises issues
•Familiar dangers:

•Dangling pointers, Uninitialized pointers, Memory leaks,
etc.

•Some new complications:
•Many of them arise when objects are copied
Copied automatically when passed as params, etc.

Copied explicitly by programmer

•Other dangers when objects are deleted
Explictly deleted, or just go out of scope

•C++ has some special features to help the situation

N-127/17/00

Innocence Destroyed (I)
// assume Item == int

Vector v1, v2;
v1.insert(0, 30);
v1.insert(1, 4);
v2 = v1;
v2.delete(0);

•//Draw the picture and weep!

CSE 143 N

N-137/17/00

After v2=v1, Before v2.delete

items
size 2

30items

size 2

v1

v2

How does v2.delete
change the picture?

4

capacity 5

capacity 5

N-147/17/00

Innocence Destroyed (II)
void add42 (Vector v) { //add 42 to front of vector

v.insert(0, 42); }

//code in main
Vector v1;
v1.insert(0, 0);
add42(v1);

•v1 passed by value, so no harm done -- right??
•Draw the picture and weep!

N-157/17/00

After v1.insert(0,0)

v1

v
call add42:

in main:

items

size 1
capacity 5

items
size

capacity

0

N-167/17/00

After v.insert(0, 42);...

back in main...

v
in add42:

items

size 2
capacity 5

42 0

v1
items

size 1
capacity 5

N-177/17/00

The Culprit: "Shallow Copy"
•When structs and classes are copied, all and
only the member variables are copied

•When there’s dynamic memory, that’s not
enough
•Example: the items pointer value is copied, so the
copy points to the same place

•Can lead to surprises and bugs

•Solution: need a concept of "deep copy"

N-187/17/00

More copy problems
•The problem with deep vs. shallow copying can appear in

these contexts:

• Assignment of one object to another

• Initialization in a variable declaration:
SomeClass f1;

SomeClass f2 = f1;

• Passing a copy of an actual to a formal parameter (pass-by-value)

• Returning an instance as the value of a function:
return someIntVector;

Why? because a function returns a new, temporary object

CSE 143 N

N-197/17/00

Needed: Deep Copy
•A "deep copy" should make a complete new copy,
including new dynamic memory

•Need a way to make the deep copy happen
automatically when appropriate
•Vector v1 = v2;
•v1 = v2;
• func1(v1);
•return v1;

•PS: this won’t solve the problem of cleaning up
dynamic memory used by local variables
•We’ll get back to that

N-207/17/00

"Deep copy"
•A deep copy makes a completely independent
copy, by allocating more dynamic memory

(deep) copy

original

items

size 4
capacity 5

0 42 -3 4

items

size 4
capacity 5

0 42 -3 4

N-217/17/00

Deep copy for Vector
•Deep copy logic:

• Initialize the new vector to empty.
•For each element in the vector:
add it to the new vector

•Could be a client function
•void copyVector (Vector &orig, Vector &newVec);
•use member functions like length, retrieve, insert, etc.

•Could be a public or private member function
•void Vector::copy (Vector &orig);
•copies from orig to current vector
•use private data directly

N-227/17/00

Making It Automatic
•Problem with copyVector: must be called explicitly
•We need it to happen automatically in certain
cases

•Solution: C++ allows a "Copy Constructor"
•Will be called automatically in certain cases where an
object must be initialized from an existing object

•Compiler recognizes it as a constructor with a
special parameter list: (classname &)
•or (const classname &)

N-237/17/00

Copy Constructor for Vector Class

class Vector {
public:

Vector ();
Vector(const Vector &);

...
}
•Compiler recognizes this as a copy constructor
•Will call automatically when

•passing arguments by value
• initializing variable with = in a variable declaration
•copying a return value

N-247/17/00

Inside the Constructor
•It’s just a function, it can do anything!
•But... what you normally write is a deep copy
•For our Vector copy constructor:

•could call a previously defined copyVector function

•could build the new copy directly

•If you don’t define your own copy constructor, the
compiler generates a default copy constructor
•Does a shallow copy

CSE 143 N

N-257/17/00

Look at the code:
Vector::Vector(Vector &other) { copy(other); }

// private member function: replace this Vector

// with a deep copy of other

void Vector::copy(Vector &other) {

// set up private variables

capacity = other.capacity;

size = other.size;

// allocate memory

items = new Item[capacity];

if(items == NULL){ … } // handle error

// copy data

for (int i = 0; i < size; ++i)

items[i] = other.items[i];

}
N-267/17/00

Technicalities of ’=’
•These two look almost identical, but they are NOT the same:

a) Vector MyVector = YourVector;

b) Vector MyVector;

MyVector = YourVector;

•The difference in technical terms:
• in a), MyVector is being created

The copy constructor is called (if there is one)

This is a variable declaration with an initializer – it is not
an assignment statement.

• in b), MyVector already exists
This is an assignment statement.

A copy constructor is not called, because we are not
constructing a new object!

For example, the object may already contain heap pointers

N-277/17/00

Solution: Overloaded =
•To handle the assignment statement, the copy
constructor won’t do.

•Instead, we can define an "overloaded assignment
operator"
•Slightly weird syntax:

Vector & Vector::operator = (Vector &other) {
//The code for this function could perform a deep copy

}

• This would normally be a public method

• Class interface declaration would contain

Vector & operator = (Vector &other);
Or (explained later): Vector & operator = (const Vector &other);

N-287/17/00

Implementing operator =
Four important parts:
1. Test for same object:

•if (&other != this) { /* copy code */ }

2. Delete old dynamically allocated data
•call cleanup() function, or

•directly (in our case): delete [] items;

3. Copy new data
•call copy()if you have one

4. Return a copy (really a ref.) of the current object:
•return *this;

N-297/17/00

And the code...
Vector & Vector::operator=(Vector &other) {

if (&other != this) //step 1

{

cleanup(); //step 2

copy(other); //step 3

}

return *this; //step 4

}

// private member function

void Vector::cleanup() {

delete [] items;

}
N-307/17/00

Detour: this
•A reserved word in C++

•Means “a pointer to the current object”

•Like a hidden 0th parameter to all member functions
• int Vector::length(Vector *thisVector *thisVector *this) { ... }

• only exists when you are in member functions!

•Can use like any other pointer
• Vector *vp = this;

• if (vp == this) ...

• return this->size;

• this->capacity = this->capacity * 2;

• return *this;

CSE 143 N

N-317/17/00

Another Use For This
class Point {

public:

Point();

Point(int x);

Point(double x);

private:

int x,y; …

};

Point::Point() {

x = 5; } //nothing new

Point::Point(double x) {

x = (int) x; }//useless

Point::Point(int x) {

this->x = x; }//useful

Point p1;

Point p2(3.14};

Point p3(42);

N-327/17/00

Innocence Destroyed (III)
void MyFunction () {

Vector tempVector; //local variable

// build a temporary vector for whatever reason

...
}

•When a function exits
• local variables are automatically destroyed

•so having a local Vector is no problem -- right?

•Draw the picture and weep!

N-337/17/00

now back in main...

Local variable goes away...
tempVector (in MyFunction)

items

size 4
capacity 5

0 42 -3 4

0 42 -3 4

N-347/17/00

Next Problem: Cleanup
•When a function exits, only the local memory is
released
•Dynamic memory pointed to inside the variable stays
allocated

•results in a memory leak
unless there is another pointer to the data

•One solution: write a function to delete the
allocated dynamic memory
•E.g., the cleanup() function we used in operator =
•For Vector, this would be simply delete [] items;
•Drawback: you (or client) must remember to call the
function

N-357/17/00

C++ Solution: A "Destructor"
•Called automatically to de-construct the object

•When it goes out of scope (e.g. end of function)
•When delete operator used

•Can contain most any code
•Normally it would contain code to release all dynamically
allocated memory

•Special syntax identifies it:
~classname ()
•no return value
•no arguments allowed

•The compiler-generated default destructor does
nothing.

N-367/17/00

Vector Destructor I

//Dynamic array version

//use same “cleanup” function
needed by deep copy

Vector::~Vector()

{

cleanup();

}

CSE 143 N

N-377/17/00

Vector Destructor II
//destructor for linked list implemention

Vector::~Vector()

{

Node *p = head;

while (p != NULL) {

Node* prev = p;

p = p->next;

delete prev;

}

}

N-387/17/00

Wise Advice
•When defining a class which uses dynamic
memory, ALWAYS provide
•a default constructor
•a deep copy method

•a copy constructor (calls the deep copy method)

•an overloaded assignment operator (calls the deep
copy)

•a destructor

•It may seem like unnecessary work, but will save
you (and your readers) from nasty surprises.

N-397/17/00

Constructor Puzzle

•Assume the class Vector has all of the following defined:
DC: default constructor; CC: copy constructor; op =:
overloaded assignment operator; D: destructor

•On each line, say if DC, CC, op =, or D is called.
Vector puzzlfunction (Vector & v1) { //line 0

Vector v2; //line 1
Vector Varray[40]; //line 2
Vector v3 = v1; //line 3
v2 = v1; //line 4
v2.VectorInsert(1, 0); //line 5
Vector * v4; //line 6
v4 = new Vector; //line 7
delete v4; //line 8
printVector(v2); //line 9
return (v2); //line 10 (tricky)

} // line 11(trickier)
N-407/17/00

More Wrinkles
•Classes within classes, i.e., member variables
which are themselves classes
•Have to know what order the constructors are called in
Answer: bottom up

•Have to know what order destructors are called in
Answer: top down

•Special syntax for calling non-default constructors of
member variables within outer-level constructors
"member initializer list" in implementation

trivial examples p.172, 173

•Nothing is ever as simple as it seems in C++!

N-417/17/00

Where We’re Headed
•We know the C++ features for dynamic memory
•We know how to package ADTs that use dynamic
memory

•Armed with this... we can begin to investigate a
series of interesting and useful data structures
and ADTs. For each one:
•What the ADT is (abstractly)

•How to implement (often more than one way)

•Applications

