
CSE 143 M

M-17/13/00

CSE 143

Vector ADT as Linked List
[Chapter 4 p.170]

M-27/13/00

Recall Vector ADT
•Earlier we defined a Vector ADT

• Data encapsulated inside the class
• Operations available only through the public interface

•More than one implementation is possible
• Array-based
+ Easy to implement

+/- Efficiency?

- Must know size

- Can’t change size

- Run out of space or waste it;
rarely "just right"

• Alternative: Reimplement based on Linked lists
+ Size varies dynamically

- a little more work to implement

+/- Efficiency?

M-37/13/00

Vector ADT
class Vector {
public:

Vector (); // construct empty vector
bool isEmpty(); // = “this Vector is empty”
int length (); // = # of items in this Vector

// Insert newItem in this Vector at newPosition
void Insert (int newPosition, Item newItem);

// Delete item at position and return a copy of it
Item Delete (int position);

// Return a copy of the item at position
Item Retrieve (int position);
...

private:
…
};

M-47/13/00

Internal Data
•Declare a struct to represent a node:

struct Node {

int data;

Node *next;

};

class Vector {
public:

...
private:

int size; //number of items in the Vector
Node *head; //ptr to linked list of items

...};

M-57/13/00

Portrait of a Vector
•Now a Vector variable might look like this:

4 8 16head

size 3

(private,
local) (on heap)

M-67/13/00

Inserting 9 at position X
•We have to find node X

•Better yet, get a pointer to X (curr) and X-1(prev)

•Example: X = 2

4 8 16head

size 3

curr

prev

newPtr

9

CSE 143 M

M-77/13/00

Finding Position X
•Write a function “PtrTo” to traverse the list, return
a pointer to the Xth element (code: p.175)

•Should be a member function
listNode * PtrTo (int X) const;

•Style point: not part of the interface, so should be private

• Special cases: X outside the range of the list
•return NULL

•Given this, curr and prev are easy to get:
•curr = PtrTo(X); prev = PtrTo (X-1)

•Better yet:
•prev = PtrTo(X-1); curr = prev->next;

M-87/13/00

Relinking for Insert (p.176)
•Given prev and curr (via PtrTo function):

•newPtr->next = curr;
•prev->next = newPtr;

•Inserting at beginning is a special case (X=0)
•newPtr ->next = head;
•head = newPtr;

•What about inserting at end of list?
•How to recognize?
• Is the code special?

M-97/13/00

Final Picture
•curr, prev, and newPtr are local variables that go
away

•head and size persist inside the object

4 8 16head

size 4

curr

prev

newPtr

9

M-107/13/00

One More Problem
•When a function is exited, only the local memory
is released
• If a local variable points to dynamic memory, that
dynamic memory stays allocated

•results in a memory leak
unless there is another pointer to the data

•We will see the solution later: a “destructor”
function called automatically

M-117/13/00

Variations on a theme
•Lists are useful and common data structures

•Many variations are possible, for example:
• Doubly linked lists

Point backwards as well as forwards

Makes finding the previous pointer a breeze

Takes a little more space and complexity to manage the extra
pointers

• Circular lists
last node points back to first node, instead of to NULL

•Many implementation tricks are possible, for example:
• Head and tail pointers.

Good for "queues" (always add at tail, always remove at head)

• Dummy nodes at front or rear
Can remove some special cases

