
CSE 143 L

L-17/12/00

CSE 143

Pointer-Based Linked Lists
[Chapter 4 p.157]

L-27/12/00

Linked Lists

•A linked list is a collection of “nodes” containing
data

•Each node points to the next node in the list.
•That's it!
•Example: a list of 3 integers:

4 88 16

L-37/12/00

Metacomment
•Linked lists -- a Great Idea In Programming

•Simple, natural
•Flexible
Many variations are possible, once basic idea is
mastered

•Linked lists are commonly implemented
with dynamically allocated nodes

•But after all, this is C++.
•So expect complications!

L-47/12/00

Implementing Linked Lists

•Each node has two members: a data item and a
next link field which points to the successor node.

•The "next link" field of one node points to the next
node in the list.

•Use a “head” or “front” variable to point to first
node

•Example: a list of 3 integers:

4 8 16head

L-57/12/00

What’s the “data item”?
•Data is the same in every node of the list

•Just like with arrays

•Could be ANY type: integer, double, Book,
Bookshelf, Appointment, BankAccount, etc.

•Most of our examples use int for simplicity

L-67/12/00

Nodes for an int Linked List
•First we’ll declare a struct which we’ll use to
represent a node:

struct Node {

int item;

Node* next;

};

•Now we can create new nodes:
Node* p;

p = new Node;

p->item = 100; // shorthand for: (*p).item = 100

p->next = NULL; // shorthand for: (*p).next = NULL

•Note the use of the -> operator

CSE 143 L

L-77/12/00

Printing a Linked List
Node* head;

. . . // Create list

Node* p;

p = head;

while (p != NULL) {

cout << p->item;

p = p->next;

}

cout << endl;

4 8 16head

L-87/12/00

Summing a Linked List
int sumList(Node* p) {

int sum = 0;
while (p != NULL) {

sum += p->item;
p = p->next; }

return sum

}
Node* head;

// build list ...
// print sum
cout << sumList(head) << endl;

4 8 16head

L-97/12/00

Manipulating Nodes
•Draw the picture that results from the following
code:

Node* front;

Node* temp;

front = new Node;

front->item = 1;

front->next = new Node;

front->next->item = 2;

front->next->next = NULL; // what did we just do?

temp = front; front = front->next;

delete temp; // what did we just do?

L-107/12/00

Inserting a new link

4 8 16head

Before:

Insert "5" after 4.

After:

L-117/12/00

Deleting a link

4 8 16head

Before:

Delete "8"

After:

L-127/12/00

Tips for Getting the Code Right

•Draw pictures

•These special cases often need slightly different code
• Middle of the list

• Beginning of the list

• End of the list
• Empty list

•Helper variables such prev, curr
• make sure they have the right values!

•Careful as usual with dynamic memory

•Fail-safe programming: asserts, etc.

•Read code of others (e.g. textbook)

CSE 143 L

L-137/12/00

Recursion and Linked Lists
•A linked list is a recursive data structure
•Recursive algorithms are natural with linked lists

•but not very efficient

•Good recursion practice!

L-147/12/00

Printing a Linked List

void print(Node* first) {

if (first == NULL)

return;

else {

cout << endl << first->item;

print(first->next);

}

}

•How many recursive calls are needed?

L-157/12/00

Printing in Reverse Order
•At first, seems difficult
All the pointers point only forward.

•Recursion to the rescue!

void RPrint(Node* first) {

if (first == NULL)

return;

else {

RPrint(first->next);

cout << endl << first->item;

}

}

•Challenge: Try doing this without recursion
L-167/12/00

Summing a List

int listSum(Node* list) {

if (list == NULL)

return 0; // empty list has sum == 0

else

return list->item + listSum(list->next);

}

•Common pattern for a list "traversal"
•How would you modify this to...

•Count the length of a list?
•Add N to each element of a list?

•Determine if a particular value occurred in the list?

L-177/12/00

Puzzler: List Remove
•Make new list (copy), same data as old, except:
don’t include nodes with a given data value in the
new list
•The original list is to be unchanged!

Node* ListRemove(Node *first, int v);

•Draw a picture of an example first!
• If you can’t draw the picture, how can you hope to
program it?

L-187/12/00

Node* ListRemove(Node *first, int v)

{

if (first == NULL)

return NULL;

else if (first->item != v){

//make a node for the new list, copy data

Node* newNode = new Node;

newNode->item = first->item;

newNode->next = ListRemove(first->next, v);

return newNode;

}

else

return ListRemove(first->next, v);

}

CSE 143 L

L-197/12/00

Another Approach to Lists
•Some programmers use a slightly different
approach to implementation
•1. Have a permanent, dummy node as the header
•2. Point the last link of the chain back to the dummy
(header) node

•All the code changes!
•On balance, may be a little simpler; fewer special cases
when inserting and deleting

