
CSE 143 J

J-17/12/00

CSE 143

Dynamic Memory

[Chapter 4, pp. 148-157]

J-27/12/00

Where We Are
•We now have conceptual tools to design
interesting, useful, and robust programs

•We have programming tools to implement quite
sophisticated algorithms

•We can invent workable data structures, but they
are still limited...

J-37/12/00

What’s wrong with the way things are?

•One problem is related to size: All of our data
structures so far have a “maximum” size.
•E.g. arrays declared with fixed size
•This size is fixed at compile time.

•Sometimes this is acceptable, sometimes not
•Allocate too little: application may not run

•Allocate too much: wasted memory (may run out)

•Many real applications need to grow and shrink
the amount of memory consumed by an object at
run time.

J-47/12/00

Another Problem: “Shape”

•All of our data structures so far are fixed in form
and shape
• Individual vars, structs, classes, or arrays of them, or
simple nesting

•Many problems require more creative shapes
•Family tree
•Company database
•Webster’s dictionary

•Need variety
• for modeling the data
• for efficiency

J-57/12/00

Solution: "Dynamic" Memory

1. Allow some of the memory to be allocated as
needed

2. Allow pieces of memory (variables) to be linked
in arbitrarily complex ways

•Most languages provide some form of dynamic
memory.

•C++ provides an interface to dynamic memory via
two new operators: new and delete.
•The dynamic memory is accessed through pointers.

J-67/12/00

Plan of Study
•First

•Review pointers and reference parameters

•Next
• Introduce C++ new and delete operators
Dangers!

•Dynamic memory in classes
•A technical side note: Pointers vs. arrays
•First major application: Dynamic linked lists

•Finally...
•Even more about dynamic memory in classes
•Vector class revisited

CSE 143 J

J-77/12/00

Data and Memory
•Objects of different types use differing amounts of
memory

•Built-in types: implementation dependent
•PC (typical):

char: 1 byte (8 bits)
"wide" chars: 2 bytes (for international UNICODE)

int: typically 4 bytes
• 2 bytes on older systems
• up to 8 bytes on newest "64-bit" computers

double: 8 bytes on many systems

•Programmer defined types (such as classes)
•depends on size of data members
•could be few bytes or thousands of bytes

J-87/12/00

Ways of Using Memory
•Static - allocated at program startup time, exists
throughout the execution of the entire program
•Best-known example: global variables

•Automatic - implicitly allocated upon function
entry, deallocated on exit

void foo (char x) {
int temp;
. . .
// x and temp are deallocated here

}

•Dynamic - explicitly allocated and deallocated by
the programmer

J-97/12/00

Pointer Variable Review
•By "address of an object" we mean the address of
the first memory cell used by the object

•A pointer variable is one that contains the address
of another data object as its value.

•To declare a pointer variable or param:
Type* name;

•Examples:
int* intPtr;

char* charPtr;

BankAccount* pToMyAccount;

//says the the variables will contain addresses, but
does not say where they are pointing.

J-107/12/00

Review: Swap in C
int a, b, temp;

a = 1;

b = 2;

// Direct Swap:

temp = a;

a = b;

b = temp; //now a==2, b==1

// Swap via function call:

swap(&a, &b);//

//now a==1, b==2

//the Swap Function:

void swap(int* p, int* q)

{

int temp;

temp = *p;

*p = *q;

*q = temp;

}

don’t forget &

don’t forget *

J-117/12/00

Two Important Operators
•The address-of operator &:

int x = 45;

int* p = &x;

•The dereference operator *:
*p = 30;

p = 72; // No! what’s the problem here?

Note: The & symbol used with reference
parameters is the same keyboard character, but it
means something quite different in that context

x
p

J-127/12/00

Review: Swap in C++
•C++ reference parameters lead to cleaner code:

void swap(int& i, int& j) {

int temp = i;

i = j;

j = temp;

}

int a=1, b=2;

// example call:

swap(a, b);

// now a==2, b==1

Note: no *’s

Note: no &s

Note: &s

CSE 143 J

J-137/12/00

More Ref Param Examples
// part of ListA.cpp

void ListA::Retrieve(

int pos, // which position

string& item, // what was there

bool& success) // did we succeed?

{

success = (0 < pos && pos <= size);

if(success)
item = items[pos-1];

}

Class private dataRef params J-147/12/00

More Ref Param Examples (2)

// part of your.cpp
bool ok;

int i=5;
string str;
ListA mylist;

for(i=0; i<42; i++) {
mylist.retrieve(i, str, ok);

if(ok) {
cout << str<< endl;

} else {

cout << "Error at pos " << i << endl;
}

}

J-157/12/00

Reference Types
•Main use: for parameters

•We can also declare variables of reference types:
Type& rname //rname will hold an alias to something

//of type Type

•Example:
int x;

int& refx = x; // a ref. variable must be initialized

x = 40;

cout << refx; // what’s the output?

refx = 20;

cout << x; // what’s the output?

•In 143 we will avoid stand-alone reference variables
• but reference params are OK.

$YR
LG��

5DU
HO\

�1H
HGH

G

J-167/12/00

Pointers and Types
•Pointers to different types are themselves
different types
double *dpt;
BankAccount * bp;

•C/C++ considers dpt and bp to have different
types
•even though under the hood they are both just memory
addresses

•Types have to match in many contexts
•e.g. actual param types matching formal param types
•pointers are no exceptions

J-177/12/00

C++ Is "Strongly Typed"

int i; int * ip;

double x; double * xp;

...

x = i; /* no problem */

i = x; /* not recommended */

ip = 30; /* No way */

ip = i; /* Nope */

ip = &i; /* just fine */

ip = &x; /* forget it! */

xp = ip; /* bad */

&i = ip; /* meaningless */

J-187/12/00

The NULL pointer
•During program execution, a pointer variable can
be in one of the following states:
•Unassigned (uninitialized)
•Pointing to a data object

•Contain the special value NULL (can also use 0)

•The constant NULL is defined as 0 in stddef.h,
and is used to mean "a pointer that does not point
to any object."
• It does not mean "address 0 of the computer"

•NULL is compatible with all pointer types

CSE 143 J

J-197/12/00

Pointers as Types
•Domain (possible values)

•The set of all memory addresses along with the NULL
pointer

•Some operations are valid on pointers of all types.
We’ll cover only a subset:
= (assignment)
int* p = &someInt;

* (dereference)
*p = 345;

== (equality test)
if (ptr1 == ptr2) { . . . }

//Carefull!! What is being compared?

J-207/12/00

More Pointer Operations
!= (test for inequality)
if (ptr1 != ptr2) { . . . }

delete (deallocate)
delete ptr; // more on this later

-> (select a member of a pointed-to object)

void foo (BankAccount* b) {

b->printBalance();

}

// How would you write this if -> were not available?

J-217/12/00

Breakthrough!
•This is all review so far... but a breakthrough is
coming: we can now allocate “dynamic” memory.
•As the program runs, we can grab memory as we need
it!

•To allocate dynamic memory, use the new
operator:
•The expression new Type returns a pointer to a newly
created object of type Type:
int *p;

p = new int; // allocate a single int

*p = 2001;

J-227/12/00

new: Allocating Memory
•The memory allocated will be the right size for the
type of object
•The pointer locates the beginning of that memory area.

•An entire array can be allocated, too
int *p2;

p2 = new int[100]; // allocate an array of ints

int *p3 = new int[100] //this works, too

•Array notation can be used with pointers (just
make sure you really are pointing at an array!)

p2[0] = -17; //

J-237/12/00

new Could Fail!
int * bigP = new int [1000000];
•new returns NULL if the memory could not be
allocated (or throws an exception in newer
versions of C++)

•Advice: always test result of new
int * bigP = new int [1000000];

if (bigP == NULL) {

... // take some recovery action

} else {

... // go ahead and use the pointer

}
J-247/12/00

Deallocation
•Deallocate memory with the delete operator:

• delete Pointer deallocates the object pointed to by Pointer
delete p; // deallocating a simple object

delete [] str; // deallocating an array of objects

• The proper amount of memory is released

•Delete does not alter the bits in the pointer!
• Useful habit:

delete p; // p not changed
p = NULL;

•The memory MUST have been allocated via new
• Woe if you try to delete local memory, etc.

• Disaster if you use delete instead of delete[] or vice versa

CSE 143 J

J-257/12/00

Where does the memory come from?

•Objects created by new come from a region of
memory set aside for dynamic objects

•Sometimes called the heap, or free store
•Textbook doesn’t use those names

•The new operator obtains a chunk of memory
from the heap; delete returns that memory to the
heap.

•In C++ the programmer must manage the heap.
•Dynamic memory is unnamed and can only be
accessed through pointers.

J-267/12/00

int *v, *w;

v = new int;

w = new int[5];

BA *pBA;

pBA = new BA;

delete v;

delete [] w;

w = new int[10];

delete pBA;

Heap Memory
local heap

J-277/12/00

Dynamic Memory: Review So Far

•new gets memory, delete gives it back
•In all cases: The new operator returns a pointer to
an object.
•Unless new fails -- then returns NULL (or throws an
exception, which probably terminates the program)

•The memory is on the heap
•unlike local variables, which are in the activation record

J-287/12/00

Dynamic Memory is Powerful
•You can use pointers without new, but every
pointer is an alias to:
•data you knew about at compile time,
•data you explicitly declared with another name,
•data whose size you knew at compile time

•New allows program
•To respond dynamically (as it runs)
•To store data whose size & "shape" cannot be
computed or estimated at compile-time

•To have data with lifetime that is independent of a
function's lifetime -- neither "static" (like globals) nor
"automatic" (like locals)

J-297/12/00

Dynamic Memory Is Dangerous

•A major source of program bugs
•Memory leaks: not giving back allocated memory
•Dangling pointers: using a pointer to memory no longer
allocated (to you)
may silently clobber data

•Using uninitialized pointers
may silently clobber data

•Security violations: giving client access to private data

•These are run-time errors
•Compiler can’t catch them

•The program may appear to run correctly... sometimes

J-307/12/00

A Quote from Bjarne Stroustrup

"C makes it easy to shoot
yourself in the foot; C++
makes it harder, but when
you do, it blows your whole
leg off."

CSE 143 J

J-317/12/00

Memory Leak Example

•Failure to return objects to heap ("memory leak")
•Computer might run out of resources
BankAccount *pBA;

for (int i = 0; i < 100000000; i++)

pBA = new BankAccount;

•“Garbage:” allocated memory for which there is no
pointer

•It’s not always this obvious!

J-327/12/00

Garbage (Memory Leak)
•Example

int* p;

p = new int;

*p = 45;

p = new int; //!

*p = 55;

•Example 2
int *p, *q;

p = new int;

q = new int;

*p = 45;

*q = 55;

p = q; //!

p

p

q

local vars. heap

J-337/12/00

Dangling Pointers I

int *p = new int;

int *q;

*p = 45;

q = p;

delete p;

*p = 46; // oops!

p = NULL; // good habit after delete.

*p = 47; // oops! (But caught!)

*q = 55; // oops!

p

q

local vars. heap

J-347/12/00

Dangling Pointers II
char* broken() {

char buffer[80];

cin >> buffer;

if (buffer[0]!=’q’)

return buffer;

char* p = &buffer[0];

*p = ’Q’;

return p;

}

main {

int i;

char * charPtr;

charPtr = broken(); // charPtr dangling

}

Destroyed when
function exits!!

main:

i
charPtr
. . .

broken:

buffer
p
. . .

J-357/12/00

Anything Wrong?

void swap (book & a, book & b) {

book * temp;

*temp = a;

a = b;

b = *temp;

}

// example call:

swap(book1, book2);

// note: no & (and that’s correct)

J-367/12/00

Security Crack
class Performance {
private:
int duration;

public:
int * getDuration (void) {

return &duration;}

};

//client
performance perf1;
....

int * dur = perf1.getDuration();

CSE 143 J

J-377/12/00

Giving Away What’s Not Yours

string s = "Smeg";
string* ps;

ps = new string("Head");
…
delete ps; // OK
delete s; // No!
ps = &s;
delete ps; // No!

J-387/12/00

new with Classes

•If the object that you allocate with new is a class
instance: then the constructor has been called.
•Might be the default constructor
bankAccount *BP; //no constructor called here!

BP = new bankAccount; //constructor called

bankAccount * AllAccounts = new bankAccount[1000];

//Reminder: system-supplied default does not initialize
member variables

•You can pass arguments to constructors, too.
bankAccount * b1 = new bankAccount ("J. Smith", 5.00);

•What's wrong with this one?
bankAccount BadB = new bankAccount;

J-397/12/00

Safety Guidelines
•Avoid creating garbage when invoking new or
moving pointers.

•Don’t lose the pointer
•Don’t dereference an unassigned pointer.
•After new, check that the pointer is not NULL
•After delete, don't use the pointer again

• If paranoid, set the pointer to NULL yourself
•Avoid security cracks

J-407/12/00

Detour: Arrays vs. Pointers
•Usually, an array name refers to the address of
the first element of the array
char qarr [10]; //true or false: qarr == & (qarr[0])

•Array notation can be used with pointers, and
vice-versa (but really sloppy to mix them like this!)

bool manglestring (char aName[], char * bName) {

int i = 0;

while (bName[i] != ‘\0’){

aName[i] = bName[i];

i++;

}

aName[i] = ‘\0’;

if (islower (*aName)){

...

}

J-417/12/00

Nevertheless... Arrays ≠ Pointers!

int * ip; //what memory is allocated?
int iarr[10]; //what memory is allocated?

iarr[0] = 100; //good or bad?
ip[0] = 200; //good or bad?
ip = iarr; //good or bad?
iarr = ip; //good or bad?
ip = new int[20]; //good or bad?
iarr = new int[20];//good or bad?

J-427/12/00

“Dynamic” Arrays
•We can get “dynamic” arrays with new

•Old “static” arrays:

const int MAX_BOOKS = 20;

book bookArray[MAX_BOOKS];
•New “dynamic” arrays:

int book_count = 20;

book *bookArray = new book[book_count];

...

book_count = 2 * book_count;

//this does not change the size of bookArray!!

CSE 143 J

J-437/12/00

Guru Stuff: Pointer Arithmetic

•You can do arithmetic on pointers
•p+1 points to the next item of its type

•Does not mean "the next byte after p"

•Takes into account the size of the type

•Under the hood:
•Arr[N] is really *(Arr + N)

$Y
RLG

��5
DUH

O\�1
HHG

HG

J-447/12/00

Trace and Find Mem. Errors
int *p1, *p2; // line 1

int i; // line 2

p1 = new int; // line 3

*p2 = 5; // line 4

int *p3 = p1; // line 5

p2 = new int[4]; // line 6

delete p3; // line 7

p3 = NULL; // line 8

p2 = &i; // line 9

*p1 = 15; // line 10

delete p2; // line 11

