
CSE 143 I

I-17/3/00

CSE 143

Recursion
Chapter 2

Advanced Reading: Chapter 5

I-27/3/00

Recursion

•A recursive definition is one which is defined in
terms of itself

•Example: Compound interest: “The value of an
investment after 10 years is equal to the value
after 9 years plus the 10th year’s interest.”
•To compute using this definition, you need to find the
9th year’s value; that is based on the 8th year’s value,
which is derived from the 7th year’s value, etc. etc.

•There are also non-recursive formulas to calculate the
final value.

I-37/3/00

Palindromes Example

•Definition I (non-recursive): A phrase is a
palindrome if it reads the same forward and
backwards
Sometimes we ignore spaces, punctuation, etc.

•Definition II (recursive): A phrase is a
palindrome if the 1st and last letters are the
same, and what’s inside is itself a palindrome
(or is empty).

I-47/3/00

Insist without Iterating
char InsistOnYorN (void) {

char answer;
cout << "Please enter y or n: ” << endl;
cin >> answer;
switch (answer) {

case 'y': return 'y';
case 'n': return 'n';
default:

return InsistOnYorN();
}

}

I-57/3/00

Computer Science Examples
•Recursive procedure: a procedure that invokes
itself

•Recursive data structures: a data structure may
contain a pointer to an instance of the same type
struct Node {
int data;
Node *next;

};

•Recursive (inductive) definitions: if A and B are
arithmetic expressions, then (A) + (B) is a valid
expression
•Try describing this non-recursively: hard
or impossible

I-67/3/00

Factorial Example
n! (“n factorial”) can be defined in two ways:

•Non-recursive definition

n! = n * (n-1) (n-2) … * 2 * 1

•Recursive definition

n! =
1 , if n = 1

n * (n-1)! , if n > 1

0! is usually defined to be 1

Undefined for negative numbers

CSE 143 I

I-77/3/00

Factorial (2)

• How do we write a function that reflects the
recursive definition?
int factorial(int n) {

assert(n >= 1);

if (n == 1)

return 1;

else

return n * factorial(n-1);

}

• The factorial function invokes itself.

• How can this work?

I-87/3/00

How Recursion Works:
Simplified Model

•Every time you call a function, you get a
fresh copy of it.
•If you call recursively, you end up with more
than one copy of the function active

•When you exit a function, only that copy
of it goes away.

•In reality...
•there’s only one copy of the code (instructions),
but separate copies of the data (variables and
parameters)

I-97/3/00

How Recursion Works: Details

•Review: local variables and formal params are
•allocated when { } block is entered,
•deleted when block is exited.

•Here’s how:
•Whenever a function is called (or { } block is entered), a
new "activation record" is created, containing:
-- a separate copy of all local variables and
parameters
-- control info, such as where to return to

•Activation record is alive until the function returns
Then it is destroyed

•This applies whether or not function is recursive!

I-107/3/00

Tracing the Process
•To trace function calls

•draw a box each time a function is called.
•draw an arrow from caller to called function
• label data (local vars, params) inside the box
• indicate the returned value (if any)
•cross out the box after return
and don’t reuse it!

•Question: how is this different from a "static call
graph"?

•Note that no special handing is needed just
because a function happens to be recursive!

I-117/3/00

Trace Example
int factorial(int n) {

if (n == 1)

return 1;

else

return n * factorial(n-1);

}

…
int main (void) {

int x = factorial(4);

cout << “4! = “ << x << endl;

...

factorial(n:4)
4*factorial(3)
=4 * 6 = 24

factorial(n:3)
3*factorial(2)
=3 * 2 = 6

factorial(n:2)

2*factorial(1)
=2 * 1 = 2

factorial(n:1)
return 1

main()

X=factorial(4)

ca
ll

return

I-127/3/00

What is Recursion?
•A programming technique

•a function calling itself

•An approach to problem-solving
•Look for smaller problems similar to the larger problem

•A way of thinking about algorithms
•Turns out to lead to good mathematical analyses

•The natural algorithmic technique when recursive
data structures are involved

Recursion takes practice
•Eventually it becomes a natural habit of thought

CSE 143 I

I-137/3/00

What About Efficiency??
•Is recursion faster/slower/smarter/more powerful
etc. than iteration? We’ll talk about that, too --
later

•Learning how to drive a car, vs learning when and
where to drive a car.
•Different kinds of knowledge

•The first especially requires focused practice

I-147/3/00

Infinite Recursion
• Mathematically:

• n! = n * (n-1)! = (n-1)! * n
• Why not program it as (n-1)! * n in that order?
int BadFactorial(n) {

int x = BadFactorial(n-1);

if (n == 1)

return 1;

else

return n * x;

}

• What is the value of BadFactorial(2)?
• The rule: Must always have some way to make

recursion stop, otherwise it runs forever:

I-157/3/00

Using Recursion Properly
•For correct recursion (recursion that does
something useful and eventually stops), need two
parts:
1. One or more base cases that are not recursive
if (n == 1) return 1; // no recursion in this case

2. One or more recursive cases that operate on smaller
problems that get closer to a base case

return n * factorial(n-1);
//factorial(n-1) is a smaller problem than factorial (n)

•The base case(s) should always be checked
before the recursive calls

I-167/3/00

Searching an Array
•Problem statement: Given an array A of N ints, search

for an element with value x

•First, an iterative solution: “Linear Search”
// Return index of x if found, or -1 if not

int Find (int A[], int N, int x)
{

for (int i = 0; i < N; i++)
if (A[i] == x)

return i;
return -1;

}

•How efficient is Linear Search?
• Might find x on first step, or you might have to check all N values
• On average, it takes about N/2 times through the loop

I-177/3/00

Binary Search
•If array is sorted, we can search faster

•Start search in middle of array
if x is right there in the middle, you’re done

• If x is less than middle element, need to search only in
lower half

• If x is greater than middle element, need to search only
in upper half

•continue the seach within the half chosen

•Why is this faster than linear search?
•At each step, linear search throws out one element
•Binary search throws out half of remaining elements

•Why is recursion natural here?
I-187/3/00

Example

Find 26 in the following sorted array:
1 3 4 7 9 11 15 19 22 24 26 31 35 50 61

22 24 26 31 35 50 61

22 24 26

26

CSE 143 I

I-197/3/00

Binary Search (Recursive)
int BSearch(int A[], int size, int x) {

return findInRange(A, x, 0, size-1);

}

int findInRange(int A[], int x, int lo, int hi) {

if (lo > hi) return -1;

int mid = (lo+hi) / 2;

if (x == A[mid])

return mid;

else if (x < A[mid])

return findInRange(A, x, lo, mid-1);

else

return findInRange(A, x, mid+1, hi);

}

I-207/3/00

Linear vs Binary Search
•Linear search is simpler to program
•But much slower, except for very small N.
•How many array elements are examined?

Ex.: N = 1,000,000
•Linear search: 500,000 on average

•Binary search: only about 20 (!)

•Mathematically: how many times do you have to
cut N in half before you get down to 1?
•That is, 2? = N
•Solution: log2N.

I-217/3/00

Kick-off and Helper Functions

•Previous example illustrates a common pattern:
•Top-level "kick-off" function
Not itself recursive

Starts the recursion going

Returns the ultimate answer

•Helper function
Contains the actual recursion

May require additional parameters to keep track of the
recursion. (Actually solving a more general problem.)

•Client programs only need call the kick-off
function

I-227/3/00

Recursion with Array Params
double sum (double iArray [], int from, int to) {

//find the sum of all elements in the array between index "from" and index "to"

if (from > to)
return 0.0;

return iArray[from] + sum (iArray, from+1, to);
}
//Client code:
double CashValues[200];
...
double total = sum (CashValues, 0, 199);

•Implemented without kick-off/helper structure
• but probably would benefit from having it

I-237/3/00

What does this function do?
int mystery (int x) {

assert (x > 0);
if (x == 1)

return 0;
int temp = mystery (x / 2);
return 1 + temp;

}

I-247/3/00

Recursion vs. Iteration, I
•When to use recursion?

•Processing recursive data structures

•“Divide & Conquer” algorithms:
1. Divide problem into subproblems

2. Solve each subproblem recursively

3. Combine subproblem solutions

•When to use iteration instead?
•Nonrecursive data structures

•Problems without obvious recursive structure

•Problems with obvious iterative solution

•Functions with a large "footprint"
especially when many iterations are needed

CSE 143 I

I-257/3/00

Recursion vs. Iteration, II
•In theory, recursion and iteration are completely
equivalent: any iteration can be rewritten using
recursion, and vice-versa

•Recursion often gives simpler code
•Iteration is often more efficient

•somewhat faster, less memory (but more code)

•A compromise:
• If the problem is naturally recursive, design the algorithm
recursively first

•Later convert to iteration if needed for efficiency
•General principle: "Make it right, then make it efficient"

I-267/3/00

Dueling Factoids
•Factoid 1: Some programming languages provide
no iteration control statements!
• loops must be implemented through recursion
•rely on the compiler to make it efficient

•Prolog, pure LISP

•Factoid 2: Not all programming languages
support recursion!
•COBOL, FORTRAN (at least early versions)

•Many highly paid programmers never use recursion
So... why do we make you do it??

I-277/3/00

Summary

•Recursion is something defined in terms of itself
•Activation records make it work
•Elements of recursive functions

•Base case(s)
•Recursive case(s)
Base case always checked first

•When to use/when to avoid

As the course unfolds, we’ll see more and more
cases where recursion is natural to use

