
CSE 143 F

F-16/26/00

CSE 143

Class Constructors

[Chapter 3, pp. 127-131]

F-26/26/00

Initialization: Review!

•Variables must be initialized before 1st use
int sum;

for (int i = 0; i < 10; i++)

sum = sum + i; //whoops!

•Simple types can be initialized at declaration
int x = 23;

char InstructorName[] = “I. M. Boring”;

•Input might do it
int num;

cin >> num;

F-36/26/00

Initialization: Other Cases
•Parameter: maybe

int angle;

modifyTriangle (angle);

//is this or is it not initializing "angle"?

• If a variable is not initialized somehow, it is an error.

• What kind of error?

•C++ local variables are not, not, not initialized

automatically!
• But MSVC does so in "debug" mode (?)

Highlights the difference between the C++ language and a

particular C++ system.

• Useful advice: Always test your program in
"release" mode before turning in!

F-46/26/00

Initialization of Instances

•When declaring an instance of a class, its
data members are all uninitialized
•No surprise, consistent with C philosophy

BankAccount a1; // What is "name"? "Balance"?

A1.Deposit(20.0);

cout << a1.Amount(); //What’s the result?

•Need a way to "construct" and initialize new
objects

F-56/26/00

One Solution

•Programmer-defined init function

class BankAccount {

public:

void init(char name[], double initBalance);

. . .

};

BankAccount myAccount;

myAccount.init(“Bob”, 200.0);

•Drawback: What if the client doesn’t call init?

F-66/26/00

Better Solution

• In C++, the constructor is a special
function (method) automatically called
when a class instance is declared

• Three Weirdnesses:
1. Constructor’s name is class name
2. No explicit return type, not even void...

3. Invocation is automatic: can't disable

CSE 143 F

F-76/26/00

A Better Bank Account
//in BankAccount.h:

class BankAccount {
...
public:

BankAccount();
void deposit(double amount);

. . .
}; //in BankAccount.cpp:

BankAccount::BankAccount(){

balance = 0.0;

strcpy(owner, “”);

}
F-86/26/00

Called Automatically
•With the constructor defined, what’s wrong with
the example now? (trick question!)

BankAccount a1;

a1.deposit(20.0);

cout << a1.amount(); //what’s the result?

Answer: Nothing! the constructor was called automatically
and initialized the private "balance" variable.

F-96/26/00

Constructors w/ Arguments
Q: What’s still wrong with the improved bank
account class?

A: "" was a silly way to initialize the 'name' field.

•Solution: We can declare constructors that take
arguments
• allows us to pass in meaningful values for initialization.
class BankAccount {

public:

BankAccount(char name[]);

. . .

};

F-106/26/00

Multiple Constructors
•May be several reasonable ways to initialize
a class instance

•Solution: multiple constructors
•All have same name (name of class)
•Distinguished by number and types of arguments

•We say the constructor is "overloaded."
•You can do this with any function or methods in
C++. More later!

•It's one case of "polymorphism," one of the chief
characteristics of object-oriented programming

F-116/26/00

An Even Better Bank Account
•Specification

class BankAccount {

public:

BankAccount();

BankAccount(char name[]);

BankAccount(double v, char name[]);

. . .

};

F-126/26/00

An Even Better Bank Account
•Implementation

BankAccount::BankAccount() {

balance = 0.0;

strcpy(owner, “”);

}

BankAccount::BankAccount(char name[]) {

balance = 0.0;

strcpy(owner, name);

}

BankAccount::BankAccount(double v, char name[]) {

balance = v;

strcpy(owner, name);

}

CSE 143 F

F-136/26/00

Invoking a Constructor
•A constructor is never invoked using the dot
notation

•A constructor is invoked (automatically) whenever
a class instance is created:

// implicit invocation of BankAccount()

BankAccount a1;

// implicit invocation of BankAccount(char[])

BankAccount a2(“Bob”);

// explicit invocation of BankAccount(char[])

BankAccount a3 = BankAccount(“Bob”);

//This is NOT an assignment statement!

F-146/26/00

"Default" Constructors
•A constructor with 0 arguments is called a
default constructor.
•It is invoked in the variable declaration without ()
-- another weirdness

•If no explicit constructors are given, a
default is supplied by compiler
•Takes no arguments, does nothing
•Not guaranteed to perform any initialization
•Invisible

F-156/26/00

Default Constructor Pitfall
•If a class has one or more “non-default”
constructor:
•then NO compiler-generator default constructor
will be supplied

•Can cause subtle errors
•Wise advice: always define your own default
constructor

F-166/26/00

Constructors and Arrays
•BankAccount AccountList [10000];
•How many objects are being created?
•Is a constructor called? How many times? Which
constructor?

•Answer: in an array of class instances, the default
constructor is called for each array element

•What if you want to invoke one of the other
constructors, e.g., BankAccount(double v, char name[]);

•Answer: Sorry, no way.

F-176/26/00

Puzzler
•How many times is a constructor called in this
code?

BankAccount myaccount ("Martin"), youraccount;
BankAccount otheraccounts [100];
...
myaccount.GiveAwayMyMoney (otheraccounts, 100);

if (myaccount.IamRicher (youraccount))
cout << "I win!!" ;

F-186/26/00

Methods for Puzzler

//Takes all the money from my account and gives it to
//the poor
void BankAccount::GiveAwayMyMoney

(BankAccount them [], int num);

//returns true iff this account has more money than
//second one (the argument)
bool BankAccount::IamRicher (BankAccount b);

//A "copy constructor" is involved
//more about that another day

CSE 143 F

F-196/26/00

Constructors: Review
•Purpose: provide (automatic) initialization
•A constructor cannot return a value
•A class may provide multiple constructors

•Compiler will choose appropriate one, depending on
arguments.

•Invoking a constructor differs from invoking other
methods
•Happens automatically

•Syntax a little weird

F-206/26/00

Invocation: Review
//default constructor: no ()
BankAccount b1; //NOT BankAccount b1();

//constructor with arguments
BankAccount b2(10.0, "Bob");

//initialization by copy
BankAccount b3 = BankAccount("Susan");

//assignment from a temporary constructed object
BankAccount b4; //default applied
b4 = BankAccount(“Susan”); //new object assigned to old

//not allowed to use explicit . notation
BankAccount b5; //default applied
b5.BankAccount (“Susan”); //NOT ALLOWED!!

F-216/26/00

Exercise I
•Design a TranscriptItem class

•Quarter
•Course name
•Grades
•UW style grades - numerical + letters (I, X, N,…)

•Function overloading - same function may
take different types of arguments

ti.SetGrade(3.9);

ti.SetGrade(‘X’);

F-226/26/00

Transcript Item
enum QuarterType{WINTER, SPRING, SUMMER,AUTUMN};

enum GradeType{X_GRADE = 41, I_GRADE, N_GRADE};

class {

public:

TranscriptItem(int, QuarterType, char[], double);

TranscriptItem(int, QuarterType, char[], char);

private:

int year;

QuarterType quarter;

char courseName[10];

int grade; // 0 .. 40 - numerical

// 41+ letter grades, -1 invalid

};

F-236/26/00

Exercise II

•Design a Transcript class
•How is the data represented?
•What are the public methods?
•Are there any private methods?

