
CSE 143 E

E-16/26/00

CSE 143

Classes

[Chapter 3, pp. 125-131]

E-26/26/00

Bank Accounts (Another ADT Example)

•Data
• Owner Name
• Owner SSN
• B a l a n c e
• Transaction history
• …

•Operations
• Create
• Deposit
• Withdraw
• Balance Inquiry
• …

Client
Program

E-36/26/00

Bank Accounts (Another ADT Example)

•Data
• Owner Name
• Owner SSN
• Balance
• Transaction history
• …

•Operations
• Create
• Deposit
• Withdraw
• Balance Inquiry
• …

Client
Program

?

E-46/26/00

Bank Accounts (Another ADT Example)

•Data
• Owner Name
• Owner SSN
• Balance
• Transaction history
• …

•Operations
• Create
• Deposit
• Withdraw
• Balance Inquiry
• …

Client
Program

Bank Acct ADT

E-56/26/00

ADTs: Great Idea, but...
•How do we actually get modularity,
abstraction, ADTs, black boxes, etc. in our
programs?

•How do we actually encapsulate?

•Main programming construct: the class
•New and major difference between C++ and C
•Based on C struct.

E-66/26/00

Classes vs. Structs
•A lot like a C struct in syntax:

class BankAccount {

// Class member declarations
};

•Two enhancements support encapsulation
•Members (= components) can be functions
not just data

•Can specify private vs. public members

CSE 143 E

E-76/26/00

A Bank Account Class (I)
// Representation of a bank account
class BankAccount {
public:

// set account owner to given name
void init(char name[]);

// add amount to account balance
void deposit(double amount);

// get current account balance
double amount();
char owner[30]; //account holder’s name
double balance; //current account balance
};

E-86/26/00

A Class is a Type

BankAccount a1, a2;

•The code above creates two instances of the
BankAccount class.

•Each instance has its own copy of the data
members of the class:

owner: “Jack”
balance: 200.17

owner: “Jill”
balance: 940.15

a1 a2

E-96/26/00

How Do You Access It?

BankAccount a1, a2;

•Access data members just like a struct

if (a1.balance == 200.17) … // is True

a2 = a1; // allowed

•Access member functions that way too:

a1.deposit(12.75); // TA payday!

owner: “Jack”
balance: 200.17

owner: “Jill”
balance: 940.15

a1 a2

E-106/26/00

How Clients Use a Class
•A class is treated like any programmer-defined
type. For example, you can:
•Declare variables of that type:

BankAccount anAccount;

•Can have arguments (parameters) of that type:
void doSomething (BankAccount anotherAccount);

•Use one type to build other types:
class Bank {

public:

. . .

private:

BankAccount accounts[100];

};

E-116/26/00

A Bank Account Class (II)
// Representation of a bank account
class BankAccount {
public:
// set account owner to given name
void init(char name[]);

// add amount to account balance
void deposit(double amount);

// get current account balance
double amount();

private:
char owner[30]; // account holder’s name
double balance; // current account balance

};

•Some members are public, some are private

E-126/26/00

Public vs. Private
•Private members are hidden from clients.

•The compiler will not allow client code to access them.
•There's a "wall" around them

•Public members may be used directly by clients
•Windows or holes through the wall

•The BankAccount implementation can see both

•Trivia: “private” is the default for classes
•For the BankAccount class,

• How many data members? private? public?
• How many “methods”?
• What can the client use directly?

CSE 143 E

E-136/26/00

Operations on instances
•Most built-in C++ operators DO NOT apply to
class instances

•You cannot (for example):
•use the “+” to add two BankAccount instances
•use the “==“ to compare to accounts for equality

•To the client, the only valid operations on
instances are
•assignment (“=“)
•member selection (“.”)
•plus, can use any operations defined in the public
interface of the class.

E-146/26/00

Terminology
•Think of a class as a cookie cutter, used to stamp
out concrete objects (instances)

•Another view: objects as simple creatures that we
communicate with via “messages.” (function calls)

BankAccount myAccount;

myAccount.deposit(300.15);

instance

receiver message

selection

argument

E-156/26/00

Information Hiding
•The private access modifier supports and
enforces information hiding

// A client program . . .

BankAccount account;

account.balance = 10000.0; // NO! why?

cout << account.balance; // NO! why?

account.init(“Jill”); // ok?

account.deposit(40.0); // ok?

cout << account.amount(); // ok?

cout << account.amount; // ????

cout << account; // ????

E-166/26/00

Class Packaging
•C++ allows many legal ways to "package" classes. In

CSE143 we generally follow this pattern:
•For each class named X, a pair of files: X.cpp and X.h

• X.h (specification file)
the declaration of only one class X

maybe some constants

• X.cpp (implementation file)
#include “X.h”

contains all the member function definitions and any other
functions needed to implement them

•Client programs have #include “X.h”
•Sometimes very closely related classes are packaged

together

E-176/26/00

Interface as Contract
The public parts of a class declaration define the

interface that clients can use.
Module interface acts as a contract between client and

implementer
•Client depends on interface not changing
•Doesn’t need to know any details of how module

works, just what it does
•Implementer can change anything not in the interface,

(e.g. to improve performance)
•Implementation is a “black box” (encapsulation),

providing information hiding

E-186/26/00

Class Declaration: Interface
#ifndef BANKACCOUNT_H
#define BANKACCOUNT_H

// Representation of a bank account
class BankAccount {
public:

// set account owner to given name
void init(char name[]);
// add amount to account balance
void deposit(double amount);
// = current account balance
double amount();

private:
char owner[30]; // account holder’s name
double balance; // current account balance

};

#endif

BankAccount.h

Multiple inclusion hack – more below

CSE 143 E

E-196/26/00

Building the Class: Implementation (Code)

#include “BankAccount.h”

// set account owner to given name

void BankAccount::init(char name[]) {

balance = 0.0;

strcpy(owner, name);

}

// = current account balance

double BankAccount::amount() {

return balance;

}

// add amount to account balance

void BankAccount::deposit(double amount) {

balance = balance + amount;

}
BankAccount.cpp

scope resolution operator

need class name here

but not here

E-206/26/00

Implementing Member Functions

•Implementations of member functions use
classname:: prefix
• indicate which class the member belongs to
•“ :: ” is called the scope resolution operator

•Within member function body:
•Refer to members directly
•Can access any member, whether public or private!
•Don’t reuse class member names for formal parameters
and local variables (bad style)

E-216/26/00

Declaration vs Definition
•In C++ (and C) there is a careful distinction
between declaring and defining an item.

•Declaration: A specification that gives the
information needed to use an item
• function prototype

•class declaration (specification in header file)

•Definition: The C++ construct that actually
creates/implements the item.
• full function w/body

E-226/26/00

One-Definition Rule (ODR)
•An item (class, function, etc.) may be declared
as many times as needed in a program (i.e.,
the same declaration may be #included in
many files), but…

•An item must be defined (actually created or
implemented) exactly once in a program.

E-236/26/00

Although an item may be declared in many
different compilation units, it is a compile-time error
if identifiers (function names, constants, etc.) are
declared multiple times in one compilation unit:

Multiple Inclusion

...
const int MINSIZE = 20;
void writeLetters

(char * word);
...

#include "letters.h"

...

#include "letters.h"
#include "word.h"
...

word.h

letters.h

main.cpp E-246/26/00

Multiple Inclusion Hack
•To avoid this problem, use preprocessor directives:
// letters.h

#ifndef LETTERS_H

#define LETTERS_H
...
const int MINSIZE = 20;
void writeLetters (char *word);
...
#endif

•Read the above as:
“If the symbol LETTERS_H has not been defined, compile the code

through #endif (and define LETTERS_H), otherwise skip that code”

•Effect: the header is only processed the first time it
encountered (#included) when compiling a particular
source file

Preprocessor

directives

CSE 143 E

E-256/26/00

Classes in the Big Picture

Users wants

Engineering

reliable

cheapon-time
improvable

easy to use

modular design

testing,
verification

correct

code reuse

C++ support

style,
standards

classes

efficient

abstraction

E-266/26/00

Summary
•class construct for Abstract Data Types

•Function members (operations)
•Data members (representation)

•public vs. private members
•Specification vs Implementation

•Related concept: Declaration vs Definition
• Implementation signaled by classname::
• Implementations can access all members, public or
private

•Clients can only access public members
•Clients generally have multiple instances of a few
classes

