
CSE 143 D

D-16/26/00

CSE 143

Abstract Data Types

[Chapter 3]

D-26/26/00

Data Abstraction

What is Abstraction?
•An idealization

•A focus on essential qualities, disregarding the
“details”

•An emphasis on the what rather than the how
Specification vs. Implementation

•A problem-solving technique

D-36/26/00

Abstraction in Programming
•The type int is an abstraction for a way of
interpreting bits in memory as a number

•A struct is an abstraction of a collection of
related data items

•A function is a programmer-designed
abstraction for some computation

•A module is a programmer-designed
abstraction that groups related functions and
data together and provides an interface

D-46/26/00

Why Abstraction?
•Abstractions helps in managing complexity

•Don’t need to know details, just interface

•Treat abstractions as “black box” components
to build upon
•Know what inputs go into box, and what outputs
come out, but not what goes on inside the box

•Hierarchical or layered decomposition

D-56/26/00

Review: Types vs. Instances

•Types
•General category
•Usually few in number
•Some built in (int, char, double, etc.)
•Programmer-defined (arrays, structs,
enums, classes, etc.)

•Instances
•Particular variables, parameters, etc.
•May have many instances of a given type

D-66/26/00

Abstract Data Types

•ADTs have two aspects:
•1. Collection of data

•2. Operations that can be applied to data

•Examples
•Integers: arithmetic operations, printing, etc.

•Boolean: AND, OR, NOT, test if true, etc.

•Grade Transcript: Add, remove classes and
grades, change grades, etc.

CSE 143 D

D-76/26/00

Type = Data + Operations

•More Examples:
•Automatic Teller Machine
Data: cash available, machine status

Operations: get account information, dispense

cash, confiscate card, ...

•Telephone network switch
Data: line status, call information

Operations: set up and break down calls, send
billing information, test circuits,...

D-86/26/00

Abstract Data Types
Two separate aspects:
•Interface

•Name of new type
•“Constructors” to make instances
•Public operations on instances

•Implementation
•Data representation of the new type
•Implementation of public operations,
constructors

•Additional private operations

D-96/26/00

Implementer / Client / User
•1. Implementer (programmer)

•writes the internal details of some part of the system
•defines interface and implementation

•2. Client (programmer)
•uses the interface of the "black box" provided by the
Implementer

•does not (directly) use the implementation!

•3. User (non-programmer)
•sees only the exterior behavior of the system

•Related language for functions: Caller vs. called

D-106/26/00

Textbook example: List ADT

•A list… of names, groceries, numbers, etc.
•What do you need to do? (operations)

•Create and destroy a list
•Find out how long it is
•Add (insert) new items to it
•Delete items
•Look at (retrieve) items

•Vector
•A list where you can retrieve values by their index

D-116/26/00

Great Ideas, but...
•How do we actually get modularity, abstraction,
ADTs, black boxes, etc. in our programs?

•"Encapsulation": wrapping up the data and
operations together in a clean package

•Historical note: for many years programmers have
struggled to do this. Recent trends in
programming languages make it easier.

•Next time: the key feature of C++ which helps with
these modularity goals

