CSE 143

Abstract Data Types

[Chapter 3]

6126000 g

Data Abstraction

What is Abstraction?
eAn idealization
oA focus on essential qualities, disregarding the
“details”
*An emphasis on the what rather than the how

Specification vs. Implementation

*A problem-solving technique

626000 .,

Abstraction in Programming

®The type int is an abstraction for a way of
interpreting bits in memory as a number

®A struct is an abstraction of a collection of
related data items

e A function is a programmer-designed
abstraction for some computation

®A module is a programmer-designed
abstraction that groups related functions and
data together and provides an interface

6126000 5

Why Abstraction?

e Abstractions helps in managing complexity
eDon't need to know details, just interface

eTreat abstractions as “black box” components
to build upon

eKnow what inputs go into box, and what outputs
come out, but not what goes on inside the box

eHierarchical or layered decomposition

6126000 4

Review: Types vs. Instances

oTypes
eGeneral category
eUsually few in number
eSome built in (int, char, double, etc.)
eProgrammer-defined (arrays, structs,
enums, classes, etc.)
e|nstances
eParticular variables, parameters, etc.

eMay have many instances of a given type
6/26/00 D5

Abstract Data Types

®ADTSs have two aspects:
1. Collection of data
*2. Operations that can be applied to data

eExamples
eIntegers: arithmetic operations, printing, etc.
eBoolean: AND, OR, NOT, test if true, etc.
eGrade Transcript: Add, remove classes and
grades, change grades, etc.

626000 g

CSE 143

Type = Data + Operations

eMore Examples:
eAutomatic Teller Machine

Data: cash available, machine status
Operations: get account information, dispense
cash, confiscate card, ...

eTelephone network switch
Data: line status, call information

Operations: set up and break down calls, send
billing information, test circuits, ...

626000 7

Abstract Data Types

Two separate aspects:
e|nterface
eName of new type
e“Constructors” to make instances
ePublic operations on instances
elmplementation
eData representation of the new type

eImplementation of public operations,
constructors

eAdditional private operations

6/26/00

D-8

Implementer / Client / User

e1. Implementer (programmer)
ewrites the internal details of some part of the system
edefines interface and implementation

®2. Client (programmer)

suses the interface of the "black box" provided by the
Implementer

edoes not (directly) use the implementation!
®3. User (non-programmer)

esees only the exterior behavior of the system
eRelated language for functions: Caller vs. called

626000 g

Textbook example: List ADT

oA list... of names, groceries, numbers, etc.
e\What do you need to do? (operations)
eCreate and destroy a list
eFind out how long it is
e Add (insert) new items to it
eDelete items
eLook at (retrieve) items
e\/ector
¢ A list where you can retrieve values by their index

6/26/00

Great Ideas, but...

eHow do we actually get modularity, abstraction,
ADTSs, black boxes, etc. in our programs?

e"Encapsulation": wrapping up the data and
operations together in a clean package

eHistorical note: for many years programmers have
struggled to do this. Recent trends in
programming languages make it easier.

eoNext time: the key feature of C++ which helps with
these modularity goals

6126100 yq;

CSE 143

