CSE 143

Principles of Programming
and Software Engineering

Textbook: Chapter 1

CSE 143 C++ Programming Style Guide
(in course packet and on the web)

6126000

Programming is...

ejust the beginning!
®Building good software is hard
eWhy?
eAnd what does "good" mean? or “bad?”

e"Software engineering" = "techniques to facilitate
development of computer programs"

eProblem-solving is more than just programming
eToday: some issues, terminology, and techniques
e[ater: more and more techniques

6126000 .,

Footnote on “Software Engineering”

®“Engineer” has a specific legal connotation in
many profession
eLicensing procedures
eLegal implications
eThat has not been true in software engineering
eThat may be changing

eTexas recently became the first state to license software
engineers

6126000 3

The Software Lifecycle

®Big SW programs are expensive to develop, long-
lived, and critical to their users
eTypical stages (iterate as needed):
e Analysis and Specification
eDesign
*Coding
eTesting
eProduction
*Maintenance
eYou guess: which stage is the biggest?

6126000 4

Lifecycle in a Typical HW

eAnalysis and Specification

¢ Assignment Description
May be ambiguous!

eSample executable
eDesign

eSome of the design is implied by what you're given

e Sometimes, part of your job is “reverse engineering”
eCoding

eYour job!

eMake sure you do it in style — quality counts!
eDebugging -- your job, too.

626000 g

CSE 143

Software Lifecycle in HW

eTesting
*\We may provide some test data
eYou need make up data of your own

Maybe with data errors, too.
eProduction
e\Who are the users: TAs while grading!
eMaintenance
o|s there life for homework after turn-in??

626000 g

Software Engineering Issues

eCorrectness (of course!)
eModularity
eModule: a piece which has some independence
eEase of maintenance
eFail-safe programming
eStyle

e All of these influence modifiability, debugging,
testing, user (and programmer!) satisfaction, etc.

eBy the way... where is efficiency in all this??

626000 7

What is a "Correct" Program?

eOne that meets its specification
eWhat is the spec is incomplete or incorrect?

®OK, how do we know it's correct?

eTechniques for getting it correct

eInspection
Looking at it carefully
Mentally executing
Having a peer review it

eTesting
*Debugging
eInvariants

626000 g

A Key Goal: Modularity

®"Module:" self-contained unit of code

®| arge systems are viewed as composed of
modules

eldeally, modules are independent
eDon't depend on each other except in clear-cut ways
¢Can be independently modified
elsolate errors
eCan be developed separately
eCan be reused

626000 g

Achieving Modularity

eEasier said than done!

eMany ways a system could be divided into
modules
enot all are equally good

eAbstraction: separating the concept from the
details of implementation

eTop-down programming
eHierarchy of functions

eObject-oriented Programming: identifying
"objects" that contain both data and operations

emore later 2600
Cc-10

Down to Earth: Modules in C++

el arge C and C++ programs are written as lots of
separate .cpp and .h files

®_cpp (“source” or “implementation”) files
eContain a group of related functions
eLater: methods (functions) from a class

e h (“header”) files: /imath.cpp
econstant definitions #include <math.h>
efunction pr ot o {doublesqgrt(double){..}
etype definitions
eLater: class declarations |//math.h

double sqrt(double) ;

CSE 143

An Approach to Testing

eTesting should be a controlled experiment to
verify that the program works as intended
eImplications
eDesign first — know what you expect to happen

eRecord the design in comments so you (and
consultants, TAs, instructors) can understand what
you're trying to do and check that against actual code

eDevelop tests as you develop code
oNo!
*Changing code randomly to see if things get “better”

*“I'll add the comments once it works”
WASTE OF TIME - GUARANTEES MORE DEBUGGING!!

6126100 (1,

Putting Pieces Together

®Each .cpp file has #includes for any .h files it
needs.

eEach .cpp file is separately compiled

eEach compilation creates an “object file”
(May be part of a database kept by development system)

oA .h file may have #includes for other .h files
oA .h file does not contain #includes for .cpp files
oA .h file is not compiled by itself
®The linker combines:

e all the object files of your project

eany needed external object files or libraries

6126100 ¢ .

Building the Project

eProgrammer has to define a "project”
especify which .cpp files are to be used
elarge projects may have dozens or hundreds of source
files
®In modern systems like MSCV...
eyou do this with mouse clicks and menus
emany options and settings are available
«"Build" button may automatically perform many steps of
compilation and linking

eEventual result is one big executable file

6126100 (.14

Build Steps

e| ots of individual
steps happen when
the project is built

elf no errors, result is
one executable file

A Linker Error in MSVC: “unresolved external”

main.obj : error LNK2001: unresolved exter nal symbol "bool __cdecl
load_data(char * congt, struct team * const, int *)"
(Aoad_data@@Y A_NQADQAUteam@@PAH@Z)

hwl.exe: fatal error LNK1120: 1 unresolved externals

6126100 (.16

Testing

eHow do you know the program is correct?
eOne way: Test it!
eMicrosoft is said to have one tester for every developer
®Try as many relevant "test cases" as you can
eMany errors only show up in a few test cases
eWhat is a “successful” test case?
eSad fact of life: It is difficult or impossible to
construct a perfect set of test cases

6126100 (47

CSE 143

An Approach to Testing

eTesting should be a controlled experiment to
verify that the program works as intended
eImplications
eDesign first — know what you expect to happen

eRecord the design in comments so you (and
consultants, TAs, instructors) can understand what
you're trying to do and check that against actual code

eDevelop tests as you develop code
oNo!
*Changing code randomly to see if things get “better”

*“I'll add the comments once it works”
WASTE OF TIME - GUARANTEES MORE DEBUGGING!!

6126000 (15

Testing Concepts

e\White-box testing
elook at your code, make sure you test all of it

e.g., test both sides of every if statement
make sure every function is called, etc.

®Black-box testing

eDon't look at code
One person codes, another person tests

eImagine test cases weird enough to break your program
®Regression testing

*Run the same test cases after every program change

*Make sure you don't introduce new bugs!

6126000 (1q

Testing Incomplete Programs

eStubs
e\ery simple implementation of part of program
¢ Allows you to test another part of program
eDrivers
eTest one module of program in isolation

6126100 (o0

Some Testing Advice

eUse stubs and drivers as appropriate
eTest normal cases
¢"live" data is nice when available
®Test extreme cases
eVery small data sets
eVery large data sets
e Situations that are peculiar but legal
eEven if a situation is unlikely in the real world, it can help
find bugs
Takes unusual paths through the program

®Test error cases
*To make the program more robust

6126100 (.

Debugging

ecout at appropriate points
eshow key variables
etrace execution flow
eDebugger tool
eExecute code one line at a time
*Run to a particular program point, then stop
eLook at variable values anywhere in program

e Truly an amazing tool... how can you live without it??
Why would you want to???

6126100 (.5

Invariants

e Another tool for correctness

®“|Invariant”: something that must be true at a
particular point in a program

eThree especially common code invariants
¢"Precondition”: must be true on entry to a function (or
the function is not guaranteed to work)
¢"Postcondition": must be true on exit from a function (the
function promises this)
¢"Loop invariant": must be true on every iteration in a loop

eData invariants: Properties of (related) variables
that should hold true at all times.

6126100 (o5

CSE 143

Example: Search

int findMax(int array[], int arraySize)

{

int max = array[0];

for (int i = 1; i < arraySize; ++i)
if (max < arrayl[il)

max = array[i];

return max;

}

6126100 .oy

Writing Invariants

e|t's a good habit to form!
eOften should be recorded as comments
eMaybe be translated into code (manually)
ee.g. as "sanity-checking” code
e|n C/C++, simple (boolean) invariants can be
coded as "asserts"
echecked at run-time
eerror message given if assertion fails
epoor user interface, but terrific debugging tool

[T

Checking Preconditions

eExample: Average a list of numbers
double average (int nums[], int len);
// PRE: len > 0
// POST: Returns average of

// nums [0] . .nums [len-1]
e\What happens if len <= 0?
eaverage makes no sense!
eNeed to make sure precondition always holds
oClients (callers) should never call average with
len <= 0
*But what if there is a bug in the program?

6126100 (o5

The agssert macro

#include <assert.h>

double average (int nums[], int len)

assert(len > 0);
int sum = 0;
for (int j = 0; j < len; Jj++)
sum = sum + nums[j];
return ((double) sum / (double) len);

e|f an error occurs, program exits, printing:

Assertion failed: 1len > 0
file main.cpp, line 23

6126100 (o7

Assert: Verifying Correctness

eValue of the assert macro
eDouble-checks that your program is correct
eFinds errors early
e |dentifies the buggy part of your program

eUse it for all machine-checkable invariants
eRequired in all homework from now on

6126100 (.05

Use assert() to aid debugging

eUse assert liberally in the programming projects
e Test preconditions especially, in as much detail as
practical
eTest invariants and postconditions when reasonable
eDon't worry about the overhead
e Think of your programs as still under debug, even when
turned in.
elt is possible to disable assertion checking in
"production” code.
¢MSVC -- automatically disabled in "release” mode

6126100 ¢ pg

CSE 143

Assert vs. Error Checking

eUse asserts to catch programming errors
eUse explicit error checking to catch bad
data from user.

eUser input should never trigger an assert in
production code

e|deally, a program should always detect and
recover from bad input

Even if “recover” just means a graceful exit

6126000 (.39

Masking vs. Reporting Errors

eThink of programs as collections of functions

e\When one of these functions is executing and
detects an error, what should it do?

eTwo main choices

e 1. “Mask” the error. Fix things up so that it looks to the
rest of the program as if no error occurred

2. Report the error
Usually, report it to the calling function.
We’1ll highlight several options for doing this.

Calling function must be prepared to handle the
reported error.

[T,

Option 1: Return a Flag

®“Flag” - boolean variable indicated success/error
eExample:
bool readMoreData (params....)

e The return value simply means “function
succeeded/function found an error”

eAdvantage
esimple to check if it's OK

6126100 (.3,

Option 2: Return a Special Value

eSpecial value should be one you don’t normally
return!

eExample: -1 if normal values are positive

eAdvantage

«fits well if you're already returning something else
eDisadvantage

ecan'’t use if you could return anything on success!

6126100 (.33

Option 3: Status Functions

eStream example

oif (cin.good()) ...

«if (cin.bad()) ...

oif (cin.eof()) ...
eAdvantage

ecan do several operations, then check for an error
eDisadvantage

emay not discover error soon enough

6126100 (.34

Option 4: Error Parameter

eUsed in textbook
esee listClass functions in chapter 3

evoid listClass::ListDelete (int Position, bool &
Success) ;

esets success to false if error while deleting
e.g. position is invalid
eAdvantages

eworks even if you're already using the return value for
something else

ecan use the same error flag for several calls
eDisadvantages
ecan be cumbersome

6126100 (g5

CSE 143

Option 5: Exceptions!

e\/ery clean way to do error handling

®Basic idea: when error is detected, throw an
exception with information about what went wrong

oClient code can “catch” exception and react
appropriately (recover, terminate, etc.)

oKind of complicated in C++
eJava does it (a bit) better

e\We probably won't have a chance to use
exceptions in CSE143 — but know the idea

6126100 (g6

Do it with style, too!

eOther people will read your programs
o|f they can’t understand your program, that’s bad...
¢ (especially if they’'re your TA! — or boss!!)
eYou will read your program
(6 months later when you've forgotten it all)
eYour program will change
eEver try to reorganize someone else’s mess?
eGood style reduces bugs

6126100 (.57

CSE 143

What Style?

eSee the homework style guide on web!

eComments to show what program is doing
ee.g., preconditions & postconditions

eDescriptive names

eMany small functions
eLess than 1 page long

eUse formatting to show code structure
e Assertions used to check invariants
®No global variables, goto

6/26/00

