A Stack Class Interface

class IntStack {
public:
IntStack();
// should have a copy constructor, too

// default constructor

bool isEmpty(); // true if no items on stack
void push(int item); // add item to top

int pop(); // remove and return top item
int top(); // just return the top item
private:
7000 44

Possible Implementations

Many possible implementations

Array-based

Linked list

Or even, using already implemented Vector ADT
As implementer, use other ADTs to make job
easier

Don't reinvent the wheel for every problem

Often simplifies job to reuse pieces when possible
We'll use stack of ints as an example

could have stack of any type of data item

72000 ¢4

Stack Via Vector (3)

void IntStack::push(int item) {
items.insert (0, item);

}

int IntStack::top() const {
return items.retrieve(0);

}

int IntStack::pop() {
return items.remove(0);

}

72000 ¢ 50

Stack Via Linked List

Another implementation technique

Main idea: keep a linked list, with private “top”
pointer to the front of the list
Add new data as a new link to the beginning of
the linked list

Pop/top: removelreturn the beginning of the linked
list

Not the only way -- could have decided to make
top be the end of the list

Important thing is to choose a way;document it; and stick
with it.

72000 .55

STACK ADT

Staokvimd(waafmnnkedlist

Vector via arrays

Discussion

Why learn three different ways to implement the
same ADT?
What are the pro’s and con’s of each way?
Programming effort?
Speed (efficiency) of execution?
Suitability to application?
Other factors?

72000 .51

CSE 143




