
CSE 143 Q

Q-110/30/00

CSE 143

Class Relationships and
Inheritance

[Chapter 8, pp.343-354]

Q-210/30/00

"Class Relationships"
•... is the title of Chapter 8
•One class may include another as a member
variable

•Called a "has-a" or "inclusion" relationship
•Let’s step back first to why we care

•Computer programs make a model of the world in order
to solve some problem

• In the world, there are objects, and there often are
inclusion relationships between them

Q-310/30/00

A Different Relationship
•At the bank:

•Savings accounts and checking accounts are two kinds
of accounts

•Commercial customers and regular customers are two
types of customers

•Tellers, loan officers, and branch managers are kinds of
employees

•Customers and employees are kinds of people

•"Kind of" relationships are everywhere
•and therefore very important in modeling the real world
in a computer

Q-410/30/00

Has-a vs. Is-a
•A pencil has an eraser

•But an eraser is not a kind of pencil or vice-versa

•A pencil is a kind of writing tool
•But a pencil doesn’t contain a writing tool or vice-versa

•lions/tigers/teeth/mammals
•What relationships?

Q-510/30/00

Class in a class: "has-a"
•Use an instance of one class as a member
variable in another

•A "has-a" relationship
•A StudentCouncil "has-a" Student

In fact, more than one

•We've used this plenty already (e.g., strings, …)

•For "is-a", we'll need a different C++ feature

class StudentCouncil {
Student president;
Student minister_of_propaganda;
Student members_at_large[5];

};

Q-610/30/00

Hierarchies of Organization
•Often, we classify things in a hierarchy from
general to specific

•Hierarchies show "is-a-kind-of" relationships
•A Dog "is-a-kind-of" Canine, a Shark "is-a-kind-of"
Animal

•A Stack "is-a-kind-of" OrderedCollection

Collections

Ordered Collections Unordered Collections

Array

List

Queue

Stack

Record

Set

Direct Sequential

Bag

Heterogeneous Homogeneous

Table

Animal

Mammal Fish Reptile

Canine Feline

Dog

Tuna

Wolf Cat

Shark

CrocIguana

CSE 143 Q

Q-710/30/00

Caution: Not Every Relationship is "is-a" or
"has-a"

•dog/dog-owner
mammal

person

dog-owner dog

owner walks dog

owner feeds dog

dog bites owner
Q-810/30/00

Is-a instance vs Is-a kind of
•Commercial Customer is a kind of Customer

•Both are types

•Instances of types are by now a very familiar
programming concept

•One type being a kind of another type is a new
concept

•Compare "Fluffy is a cat" vs. "Cats are
carnivores."

Q-910/30/00

Why Focus on "is-a" and "has-a"?

•A way to take advantage of redundancy
•If Appointment contains (“has-a”) Date, and Date
is already defined, we don't have to start from
scratch
•C++: use one type inside another

•Have seen lots of examples already

•"Is-a kind of" would be another way to take
advantage of redundancy
• If I had Mammal defined, a lot of that would carry over to
Lion.

•For "is-a", we need some new C++ stuff: inheritance
Q-1010/30/00

Modeling a Bank
•Bank has name
•Has branches
•Branches have customers
•Customers have accounts
•Multiple kinds of accounts (savings, checking,
etc).

•Multiple kinds of people (employees vs
customers)
•Multiple kinds of employees (tellers, loan officers, VPs,
etc.)

Q-1110/30/00

Object - Bank Account
•Accounts have certain data and operations

•Regardless of whether checking, savings, etc.
•Data

•account number
•balance
•owner

•Operations
•open
•close
•get balance
•deposit
•withdraw

Q-1210/30/00

Kinds of Bank Accounts
C h e c k in g
 M o n th ly fe e s
 M in im u m b a l.

S a v in g s
 In te re s t ra te

B ro k e ra g e
 L is t o f s to cks
a n d b o n d s

Each type shares some data and operations of
"account", and has some data and operations
of its own.

Account

Checking Savings Brokerage

CSE 143 Q

Q-1310/30/00

Inheritance in C++
class Account {

...

double balance;

Customer owner;
Date dataOpened;

...
void makeDeposit (double

Amount);

...

};

class SavingsAccount : public
Account {

...

... double interestRate;

...
...

void creditInterest();

};

Q-1410/30/00

A Big Idea
•Inheritance is a BIG IDEA
•One of the great new features of C++
•A key concept in modern programming
•Essential for using today’s languages, tools, and
libraries

•However...
•The details in C++ can get messy
•Sometimes very, very, very, very messy.

Q-1510/30/00

Toward Object-Oriented Programming

•Inheritance is a major aspect of what is called
"object-oriented programming".

•Another is encapsulation, which we’re already
using.
•Data and methods packaged together in classes
•Public/private access control

•A third is polymorphism
•Constructor overloading is one example
•We’ll also see virtual functions and operator overloading

•Finally, OO is a matter of world-view rather than
just programming techniques

Q-1610/30/00

Inheritance Terminology
•Inheritance is a way to encode the "is-a-kind-of"
relation in OO languages
•Shark declares that it "is-a-kind-of" Fish by inheriting
from Fish

•A derived class inherits from a base class by
putting : public BaseClassName in the class
declaration

class Shark : public Fish {
// Shark-specific stuff here

};

GHULYHG�FODVV
�RU�VXEFODVV�

EDVH�FODVV
�RU�VXSHUFODVV�

Q-1710/30/00

Picturing the Hierarchy

Fish

Shark

EDVH�FODVV
�RU�VXSHUFODVV�

GHULYHG�FODVV
�RU�VXEFODVV�

All data and methods in base class (superclass) are
automatically inherited by derived (sub) class

Q-1810/30/00

Example: A Point Class
•We’re building a

graphics system...

•Let’s say we had the
following class "point"

•We can use inheritance
to create a class of
colored points based on
this class

class Point
{
public:

Point(double x, double y);

double getX();
double getY();

void print(ostream& os);

private:
double xpos;
double ypos;

};

CSE 143 Q

Q-1910/30/00

ColorPoint Via Inheritance

• ColorPoint "is-a" Point

• Therefore ColorPoint has to
be able to do anything Point
can

• All fields and methods of Point
are "inherited" by ColorPoint -
they are transparently
included!

• Derived class can add new
methods, fields

• Derived class can override
base class behavior (methods)

class ColorPoint : public Point
{
public:

ColorPoint(double x, double y,
Color c);

// getX() is inherited from Point
// getY() is inherited from Point

// New accessor method for the
// Color field
Color getColor();

// We still need to redefine
// the print method!
void print(ostream& os);

private:
// xpos is inherited from Point
// ypos is inherited from Point
Color color;

};

Q-2010/30/00

Point Hierarchy
Point

getx(), gety()
print ()

ColorPoint

getcolor ()
print ()

EDVH�FODVV
�RU�VXSHUFODVV�

GHULYHG�FODVV
�RU�VXEFODVV�

xpos ypos

color

Q-2110/30/00

Rules of Inheritance
•All data and methods in base class (superclass)
are automatically inherited by derived (sub) class
•Changes in base class are automatically propagated
into derived classes

•What about the print(), which exists in both?
•The derived version overrides

•What if you wanted to override xpos and ypos?
•Sorry, not allowed

•So ColorPoint inherits xpos and ypos
•Problem: xpos and ypos are private, right? Need some
more rules....

Q-2210/30/00

Public/Private/Protected
•Public members of base class: visible to derived
class and clients that use it

•Private members of base class: still not visible to
derived class or clients
•The private members are still there inside the derived
object! They just aren’t visible

•Protected members in base class: visible in
derived class, but not visible to clients.

•Advice: When in doubt, use “protected”
• If you expect the current class to be extended later

Q-2310/30/00

Color ColorPoint::getColor()
{

return color;
}

void ColorPoint::print (ostream& os)
{

os << "(" << getX() << ", " << getY()
<< ")/" << color;

}

ColorPoint Implementation

Q-2410/30/00

ColorPoint::ColorPoint(double x, double y, Color c)
: Point(x, y)

{
color = c;

}

ColorPoint Constructor

•New notation: “: baseclass(args, …)” calls base
class constructor
•will initialize base class fields in derived class object

•Must be placed here
Can’t call directly inside the function

•This "initializer" list can also call constructors for
member variables

CSE 143 Q

Q-2510/30/00

Inheritance and Constructors
•Constructors are not inherited!

•Can’t be, because their name specifies which class
they’re part of!

•Review: Constructors are called in "inside-out"
order

•Constructor of base class is called before
constructor of derived class executes
•Explicitly: “:class(arguments)” in initializer list

•Automatically: If explicit call omitted, default constructor
of base class is called

Q-2610/30/00

ColorPoint Client

Point p(1.0, 0.0);
ColorPoint cp1(3.14, -45.5, RED);

cp1.print(cout);
// No problem: ColorPoint::print is defined

p.print(cout);
// No problem: Point::print is defined

cout << cp1.getX() << " " << cp1.getY() << endl;
// No problem: calls Point::getX() and Point::getY()
// on Point subset of ColorPoint to access private
// xpos and ypos fields

.... p.getColor (); ...
// OK or not?

Q-2710/30/00

Substituting

Point p(1.0, 0.0);
ColorPoint cp1(3.14, -45.5, RED);

General rule (memorize): an instance of a derived
class can always be substituted for an instance of a
base class

Derived class guaranteed to have (at least) the
same data and interface as base class

"If it’s true of a mammal, it’s true of a dog"

Q-2810/30/00

Footnote:
Invoking Overriden Methods
•What if I really want to call Point’s print method,
rather than ColorPoint’s version of it?
• Might want to do this to reuse code

•What happens if we try it as follows?

void ColorPoint::print(ostream& os)
{

print(os);
// intending to call print method in superclass

os << ", " << Color;
}

Q-2910/30/00

Solution:
Class Scope Resolution Operator

•It turns out that the :: operator allows us to
explicitly call an overriden method from the
derived class

•BaseClass::method(arguments) can be used
as long as BaseClass really is a parent class
(either direct base class or more distant ancestor)

void ColorPoint::print(ostream& os)
{

Point::print(os);
os << ", " << Color;

}

Q-3010/30/00

Draw the Hierarchy
//assume all methods are public

class animal {...

dance ();

... };

class mammal : public
animal {...

dance ();

walk ();

...};

class hedgehog : public
mammal {...

// no "dance" method
dig ();
walk ();
walk (int, int);

...};

class seaUrchin : public
animal {...

dance ();
sting ();

};

CSE 143 Q

Q-3110/30/00

What’s Legal / Which function is
called?

•hedgehog sam;

•seaUrchin lisa;

•mammal mammy;

•sam.dance ();
•lisa.dance();

•mammy.dance();

•sam.walk ();

•sam.walk (1 , 0);

•lisa.walk ();

•mammy.walk ();

