
CSE 143 P

P-111/20/00

CSE 143

Queues, Event Lists, and
Simulations

Chapter 7

P-211/20/00

A Classification of ADTs
Collections

Ordered Collections Unordered Collections

Vector

List

Queue

Stack

Struct

Set

Direct Sequential

Bag

Heterogeneous Homogeneous

Table

P-311/20/00

A Stack Definition (Review)
•Stack: “Homogeneous, ordered collection,
accessed only at the front for removal and
insertion”
•Top: last value in, first value out

top

...
aStack:

P-411/20/00

When A Stack Is Not Quite Right

•People line up to use a pay phone
•There’s only one place you leave the line (at the
front, when the phone is free)

•There’s only one place you enter the line (at the
end -- everyone assumed to be polite!)

•The two places are different! So it's not a stack
•First in, first out: a “queue”

P-511/20/00

Queue Definition
•Queue: “Homogeneous, ordered collection,
accessed only at the front (removal) and
rear (insertion)”
•Front: First element in queue
•Rear: Last element of queue

•FIFO: First In, First Out

front rear

...
aQueue:

P-611/20/00

Abstract Queue Operations
•insert(item) : Adds an element to rear of queue

• succeeds unless the queue is full
• often called “enqueue”

•item remove() : Removes and returns element at the front
of queue
• succeeds unless the queue is empty

• often called “dequeue”

•item getFront() : Returns a copy of the front element of
queue
• succeeds unless the queue is empty

•No cursor, no iteration

CSE 143 P

P-711/20/00

Queue Example
•Draw a picture and show the changes to the
queue in the following example:

Queue q; int v1, v2;

q.insert(4);

q.insert(7);

q.insert(5);

v1 = q.remove();

v2 = q.getFront();

q.insert(9);

q.insert(2);

P-811/20/00

What is the result of:
Queue q; int v1,v2,v3,v4,v5,v6

q.insert(1);

q.insert(2);

q.insert(3);

v1 = q.remove();

v2 = q.getFront();

q.insert(4);

v3 = q.remove();

v4 = q.getFront();

q.insert(5);

v5 = q.remove();

v6 = q.getFront();

P-911/20/00

Queue vs. Stack
If I put a bunch of stuff in a queue or stack and then
take it all out again...

•Queue: get it back in the original order
•Stack: get it back in reverse order

•Does this suggest an algorithm for checking
palindromes??

P-1011/20/00

Common Uses of Queues
•Internal to a computer

•Processes in an operating system, waiting for service
(CPU, I/O, etc.)

•Buffering input/output
When printing to screen with cout, characters don’t
appear right away: they are buffered and sent out in
groups.

Print jobs at the printer

•Mouse events needed to be handled

•Simulations
•People or things waiting in line for service
•More about this later

P-1111/20/00

Public Queue Interface
class IntQueue { //see p.310

public:

IntQueue(); //should define a copy constructor, too
bool isEmpty();
void insert(int item);
int remove();
int getFront();

private:
// more than one way to do it. Should the client care?

};

P-1211/20/00

Queue Implementations
•Choices similar to Stack

•Array-based
•Linked list
•Existing Vector ADT implementation

•Queues are a little more complicated than Stacks
•More complexity in the implementation
•More ways to do it

CSE 143 P

P-1311/20/00

Queue Implementations
•Choices similar to Stack

•Array-based
•Linked list
•Use existing Vector ADT

Convention: Rear is last position of vector

Convention: Front is always position 0

Quite straightforward, very few lines of code

P-1411/20/00

Another Implementation
•Choices similar to Stack

•Array-based
•Linked list
•Exisiting Vector ADT implementation

•With L.L. we could follow Vector ADT pattern
• Insert at end of linked list
•Remove from front of list
•A separate “rear” pointer would increase efficiency

•Another linked-list approach: a circular list
•Let rear node point back to head node

P-1511/20/00

Conventional vs. Circular

4 8 16head

size 3

(private,
local) (on heap)

4 8 16rear

size 3

P-1611/20/00

Array Implementation
•Choices for implementation

•Array-based
•Linked list
•Exisiting Vector ADT implementation

•Stack: nItems was enough
•Queue: need to keep track of front and rear
separately
•still need to recognize empty queue, full queue

P-1711/20/00

First Attempt
•int front, rear;
•Start at index 0, add new items left to right
•Insert: rear++
•Delete: front ++

0 1 ...

This is a good start, but over time... what goes wrong?

P-1811/20/00

Wrap Around
•int size, front, rear;
•rear = (rear+1) % MAX; //on enqueue
•queueEmpty = (size == 0)
•queueFull = (size == MAX)
•Textbook p.317-318 0

1

2

CSE 143 P

P-1911/20/00

Computers and Simulation

•Computer programs are often used to “simulate”
some aspect of the real world
•Movement of people and things
•Economic trends
•Weather forecasting
•Physical, chemical, industrial processes

•Why?
•Cheaper, safer, more humane
•But how accurate?

P-2011/20/00

Simulation of a Bank

•People arrive and get in line for a teller
•When a teller is free, person at the head of the
line gets served
•Sounds like a queue is the right data model

•A bank might have different kinds of “tellers”
(commercial tellers, loan officers, etc)
•different queues for each one

•See textbook pp.324-334

P-2111/20/00

Queues and Simulations
•Queues are often useful in simulations

•because queues occur in the real world

•Common considerations
•Time between arrival
•Service time
•Number of servers

•Often want to investigate/predict
•Time spend waiting in queue
•Effect of more/fewer servers
•Effect of different arrival rates

P-2211/20/00

Simulation vs Calculation

•Business question: should the bank hire an
additional teller?

•Take a simplified situation:
•People arrive on average one per minute
•Each person spends on average one minute with the
teller

•Might be passed on historical statistics

•By calculation: each person waits on average one
minute

Would simulation give a different picture?

P-2311/20/00

Airport 2000
•Planes approach the airport
•Wait for a controller
•Are assigned one of three runways
•Land and clear the runway
•What happens with:

•more/fewer/differently scheduled planes?
•more/fewer controllers?
•another runway?
•etc.

•What would computer model look like?

P-2411/20/00

Simulations in Science
•Classical physics: describe the physical world with
(differential) equations
•Problem: too many interactions, equations too numerous
and complex to solve exactly

•Alternative: build a model to simulate the
operation

•Zillions of applications in physics, weather,
astronomy, chemistry, biology, ecology,
economics, etc. etc.

•Ideal model would allow safe virtual experiments
and and dependable conclusions

CSE 143 P

P-2511/20/00

Time-Based vs. Event Based

•Time-based simulation
•Look and see what happens at every “tick” of the clock

•Might "throw dice" to determine what happens
•Random number or probability distribution

•Size of time step?
•A day, a millesecond, etc. depending on application
•Simulating the Big Bang vs formation of Grand Canyon
•Are smaller steps better than larger steps?

P-2611/20/00

Time-Based vs. Event Based
•Event-based simulation

•Schedule future events and process each event as its
time arrives

•Bank simulation events
•“Customer arrives” could be one event (external)
•“Customer starts getting service” (internal)
•“Customer finishes transaction”
•“Teller goes to lunch”...

•Event list holds the events waiting to happen
•Each one is processed in chronological order
•External events might come from a file, user input, etc.
• Internal events are generated by other events

P-2711/20/00

Grand Canyon Simulation
•Model: erosion due to amount and angle of water
flow, type of material in top layer, etc.

•Events
•Rain shower every 1-20 days (depending on season),
flood event after 4 days of rain, earthquake every 40
years (followed by aftershock events), etc.

•Initial event list:

P-2811/20/00

EventList ADT
•See textbook p.334
•Holds events with their arrival times
•Operations:

•EventListIsEmpty
•EventListInsert

//based on time that event will happen

•EventListDelete
//process current (first) event

•EventListRetrieve
//see next event without deleting

P-2911/20/00

Summary
•Stack

•List with LIFO structure
•Access via push(item), pop(), and top()

•Queue
•List with FIFO structure
•Access via insert(item), delete(), and getFront()

•Simulation
•Computer model of a dynamic real-world situation

•EventList

P-3011/20/00

Looking Ahead
•Vector, Queue, Stack, EventList, etc. seem to be
related

•One view of the relationship
•Queue and Stack might contain a Vector as part of their
implementation

•A different view
•Queue and Stack might be a kind of a Vector

Similar data and operations, but not identical

Maybe need the old data, but some new data

Maybe could reuse some old operations, but have to
modify some or add new operations

•Likewise, maybe EventList is a kind of a Queue

CSE 143 P

P-3111/20/00

Where Are We In The Course?

•One multiple-part project coming up: simulation
•Due in stages; final part open-ended

•Lots of other course content yet to come
•Algorithm efficiency
•Sorting and searching
•Trees and other data structures

•Much of this content will not be covered in any
programming assignment
•Will be on quizzes, exams, etc.
•Will show up in future courses, programming projects,
etc.

