
CSE 143 O

O-111/20/00

CSE 143

Stacks
[Chapter 6]

O-211/20/00

Collections
•Collections or containers are ADTs that hold
many items of data, usually all of the same type

•We can think of arrays and lists as collections
•Some programming languages (or their libraries)
support various types of containers directly
•But to use the library you have to understand the
container concepts as well as many advanced language
features

•Other collection types can be programmed and/or
invented by you

•We’ll start with Stacks, then Queues, then Trees
and perhaps a couple of others

O-311/20/00

Switching Boxcars
•The back of three trains meet at a Y-junction
•Can only add/remove from the caboose-end of
each train

•Goal: get the right cars, in the right order, on the
trains.

A B

C
O-411/20/00

a

b

c

d

1

2

3

4

a

b

c

d

1

2

3

4

HAVE WANT

A B

C
C

A B

O-511/20/00

Typing and Correcting Chars

•Type characters, use backspace (<) to mean
"erase the previous character"

•The most recently typed unerased char is the one
erased

O-611/20/00

Sample
• Action

• type h
• type e

• type l

• type o

• type <

• type l

• type w

• type <

• type <

• type <
• type <

• type i

• Result

• h
• he
• hel
• helo
• hel
• hell
• hellw
• hell
• hel
• he
• h
• hi

CSE 143 O

O-711/20/00

What’s common
•I have data to store

•boxcars; characters

•The order of adding data is remembered
•I can only remove or affect what I most recently
put in

•We say the data structure is LIFO or Last In, First
Out, and we call it a Stack.

•The point where you can add data is called the
Top.
•boxcar train: Top is the end of the train
•character line: Top is the rightmost character

O-811/20/00

Stack as ADT
•Top: Uppermost element of stack,

first to be removed
•Bottom: Lowest element of stack,

last to be removed
•Elements are always inserted and
removed from the top (LIFO)

•Homogeneous collection (items all
the same type)
•Could be ANY type

•Most of our lecture examples are stacks
of ints

...

top

bottom

aStack:

O-911/20/00

Abstract Stack Operations

•push(item): Adds an element to top of stack,
increasing stack height by one

•item pop(): Removes topmost element from stack
and returns it, decreasing stack height by one

•item top(): Returns a copy of topmost element of
stack, leaving stack unchanged

•No “direct access”
•cannot index to a particular data item

•No way to traverse the collection

O-1011/20/00

What is the result of...
Stack s;

int v1,v2,v3,v4,v5,v6;

s.push(1);

s.push(2);

v1 = s.pop();

s.push(3);

s.push(4);

v2 = s.pop();

s.push(5);

v3 = s.pop();

v4 = s.pop();

v5 = s.pop();

v6 = s.pop();

v1 v2 v3 v4 v5

v6

s

O-1111/20/00

Stack Example
•Show the changes to the stack in the following
example:

Stack s;

int i;

s.push(5);

s.push(3);

s.push(9);

i = s.pop();

i = s.top();

s.push(6);

s.push(4);

O-1211/20/00

Stacks Around Us
•Stack of books on a desk
•Trays in the Husky Den

•Take one from top only

•Tray on bottom was put there first

•Discard pile in a card game
•Discard on to top, draw card from top
•Not allowed to see or draw what’s underneath

•Towers of Hanoi

CSE 143 O

O-1311/20/00

Stacks in CS

•Implementing function calls
•Activation records go on a stack

•Evaluating expressions
•How does a calculator (or compiler)
understand (3 +4)/5?
more later

•“Backtracking” to systematically try
all combinations of possibilities
•e.g., to explore paths through a maze

O-1411/20/00

A Stack Class Interface
class IntStack {

public:

IntStack(); //constructor

//should have a copy constructor, too

bool isEmpty(); // is the stack empty?

void push(int item);

// add item to top

int pop(); // remove and return top item

int top(); // show the top item

private:

. . .

};

O-1511/20/00

A Stack Client
// Goal: Read numbers and print in reverse order

void ReverseNumbers() {

IntStack s;

int oneNumber;

while (cin >> oneNumber) {

s.push(oneNumber);

}

while (!s.isEmpty())

oneNumber = s.pop();

cout << oneNumber << endl;

}

O-1611/20/00

Possible Implementations
•Many possible implementations

•Array-based

•Linked list

•Or even, using already implemented Vector ADT

•As implementer, use other ADTs to make job
easier
•Don’t reinvent the wheel for every problem

•Often simplifies job to reuse pieces when possible

•We’ll use stack of ints as an example
•could have stack of any type of data item

O-1711/20/00

Stack Via Vector ADT

•We’ll use a private Vector variable.
#include “Vector.h”

class IntStack {

public:

IntStack();

bool isEmpty(); // is the stack empty?

// etc etc -- all the Stack operations

...

private:

Vector items;

};

Note: no Top variable! Always use the node at the head of the list
as the Top.

O-1811/20/00

Review: Vector Interface
class Vector {
public:

Vector ();

bool isEmpty();

int length ();
void insert (int newPosition, int newItem);

int delete (int position);

int retrieve (int position);

...

}

CSE 143 O

O-1911/20/00

Stack Via Vector (2)

IntStack::IntStack() { }

// don’t need to do anything, why?

bool IntStack::isEmpty() {

return items.isEmpty();

}

O-2011/20/00

Stack Via Vector (3)
void IntStack::push(int item) {

items.insert(0, item);

}

int IntStack::top() {

//FILL THIS IN

//HINT: can be done in one line of code

}

int IntStack::pop() {

//FILL THIS IN

}

O-2111/20/00

Possible Implementations
•Many possible implementations

•Array-based

•Linked list

•Or even, using already implemented List ADT
As implementer, use other ADTs to make job easier

Don’t reinvent the wheel for every problem

Often simplifies job to reuse pieces when possible

O-2211/20/00

Stack Via Linked List
•Another implementation technique
•Main idea: keep a linked list, with private “top”
pointer to the front of the list

•Add new data as a new link to the beginning of
the linked list

•Pop/top: remove/return the beginning of the linked
list

• Not the only way -- could have decided to make
top be the end of the list
• Important thing is to choose a way;document it; and stick
with it.

O-2311/20/00

Stack Via Linked List (2)
struct Node {

int data;

Node* next;

};

class IntStack {

public: //same as before

...

private:

Node * top; //points to top

//NULL means empty stack

};

O-2411/20/00

Stack Via Linked List (3)
// Push item onto top of this stack

void IntStack::push(int item) {

Node *newNode = new Node;

assert(newNode != NULL);

newNode->data = item;

newNode->next = top;

top = newNode;

}

// pop an item off the stack

int IntStack::pop() {

}

CSE 143 O

O-2511/20/00

Possible Implementations
•Many possible implementations

•Array-based

•Linked list

•Or even, using already implemented List ADT
As implementer, use other ADTs to make job easier

Don’t reinvent the wheel for every problem

Often simplifies job to reuse pieces when possible

O-2611/20/00

Stack Via Dynamic Arrays
class IntStack {

public: //same as before

...

private:

int size; // # items currently in stack

int capacity; // amount of space allocated

int *data; // Items in stack are stored

// in data[0.. size-1].

//data[0]is the bottom of the stack;

// data[size-1] is the top item on the stack.

};

•The comments are very important to record how we
plan to use the variables

O-2711/20/00

Stack Via Arrays (2)
// construct empty IntStack

IntStack::IntStack() {

size = 0;

capacity = DEFAULT_CAPACITY;

data = new int[capacity];

assert(data != NULL);

}

// = “this stack is empty”

bool IntStack::isEmpty() {

return (size == 0);

}

O-2811/20/00

Stack Via Arrays (3)
// Push item onto top of this stack

void IntStack::push(int item) {

if (size == capacity) growArray(capacity * 2);

else {

data[size] = item;

size++;

}

}

// FILL IN THE CODE

int IntStack::pop() {

}

O-2911/20/00

Picturing the Implementations
All have the same public interface

Picture the private data

• Vector itself allows more than one implementation!

Stack via Vector

Vector items

Stack via arrays

size

items

Stack via linked list

top
capacity

data

O-3011/20/00

Stack via Vector

Vector items

Stack via arrays

items

Stack via linked list

top

Vector via arrays
Vector via linked list

head

STACK ADT

size

size
capacity

data

size
capacity

data

CSE 143 O

O-3111/20/00

Discussion
•Why learn three different ways to implement the
same ADT?

•What are the pro’s and con’s of each way?
•Programming effort?
•Speed (efficiency) of execution?

•Suitability to application?

•Other factors?

O-3211/20/00

Stack Application:
Evaluating Expressions

•Expressions like “3 * (4 + 5)” have to be
evaluated by calculators and compilers

•We’ll look first at another form of
expression, called “postfix” or “reverse
Polish notation”

•Turns out a stack algorithm works like
magic to do postfix evaluation

•And... another stack algorithm can be used
to convert from infix to postfix!

O-3311/20/00

Postfix vs. Infix

•Review: Expressions have operators (+, -, *, /,
etc) and operands (numbers, variables)

•In everyday use, we write the binary operators
in between the operands
•“4 + 5” means “add 4 and 5”

•called infix notation

•No reason why we couldn’t write the two
operands first, then the operator
•“4 5 +” would mean “add 4 and 5”

•called postfix notation

O-3411/20/00

More on Postfix
•3 4 5 * - means same as (3 (4 5 *) -)

• infix: 3 - (4 * 5)

•Parentheses aren’t needed!
•When you see an operator:
both operands must already be available.

Stop and apply the operator, then go on

•Precedence is implicit
•Do the operators in the order found, period!

•Practice converting and evaluating:
•1 2 + 7 * 2 %

•(3 + (5 / 3) * 6) - 4

O-3511/20/00

Why Postfix?
•Does not require parentheses!
•Some calculators make you type in that way
•Easy to process by a program
•The processing algorithm uses a stack for
operands (data)
•simple and efficient

O-3611/20/00

Postfix Evaluation via a Stack

•Read in the next “token” (operator or data)
• If data, push it on the data stack

• If (binary) operator (call it “op”):
Pop off the most recent data (B) and next most recent
(A)

Perform the operation R = A op B

Push R on the stack

•Continue with the next token
•When finished, the answer is the stack top.
•Simple, but works like magic!

CSE 143 O

O-3711/20/00

Refinements and Errors
•If data stack is ever empty when data is needed
for an operation:
•Then the original expression was bad
•Too many operators up to that point

•If the data stack is not empty after the last token
has been processed and the stack popped:
•Then the original expression was bad

•Too few operators or too many operands

O-3811/20/00

Example: 3 4 5 - *
Draw the stack at each step!
•Read 3. Push it (because it’s data)
•Read 4. Push it.
•Read 5. Push it.
•Read -. Pop 5, pop 4, perform 4 - 5. Push -1
•Read *. Pop -1, pop 3, perform 3 * -1. Push -3.
•No more tokens. Final answer: pop the -3.

•note that stack is now empty

O-3911/20/00

Converting in- to post-
•A different algorithm converts from infix to postfix

•Uses a stack of operators.

•Algorithm:
•Read a token
• If operand, output it immediately
• If ‘(‘, push the '(' on stack
• If operator:
if stack top is an op of => precedence: pop and output
stop when ‘(‘ is on top or stack empty
push the new operator

• If ‘)’, pop and output until ‘(‘ has been popped
•Repeat until end of input
pop rest of stack

O-4011/20/00

Another Stack Application
•Searching for a path through a maze
•Algorithm: try all possible sequences of locations
in the maze until you find one that works (or no
more to try)
•called “exhaustive search”

•A stack helps keep track of the possibilities
• traces a path of locations

• just like the recursive activation records in the maze-
solver

O-4111/20/00

Stack Wrapup
•Essence: Last In, First Out
•Various ways to implement
•Numerous uses

• In Computer Science

• In modeling the world

