
CSE 143 M

M-111/6/00

CSE 143

Vector ADT as Linked List
[Chapter 4 p.170]

M-211/6/00

Linked List vs Vector ADT
•A linked list is a data structure

•A programming technique for organizing data

•Earlier we defined a Vector ADT
•Data encapsulated inside the class

•Operations available only through the public interface

•Original implementation of Vector used arrays
•Numerous drawbacks already pointed out

•Let’s reimplement Vector using linked lists!
•Will show a Vector of ints; Vectors of other types would
be similar

M-311/6/00

Internal Data
•Declare a struct to represent a node:

struct Node {

int data;

Node *next;

};

class Vector {
public:

...

private:

int size; //number of items in the Vector

Node *head; //ptr to linked list of items

...}
M-411/6/00

Portrait of a Vector
•Now a Vector variable might look like this:

4 8 16head

size 3

(private,
local) (on heap)

M-511/6/00

Inserting at position X
•We have to find node X

•Better yet, get a pointer to X (curr) and X-1(prev)

•Example: X = 2

4 8 16head

size 3

curr

prev

newPtr

9

M-611/6/00

Finding Position X
•Write a function “PtrTo” to traverse the list, return
a pointer to the Xth element (code: p.175)

•Should be a member function
•But not part of the interface, so should be private

listNode * PtrTo (int X) const;
•Special cases: X outside the range of the list

•return NULL

•Given this, curr and prev are easy to get:
•curr = PtrTo(X); prev = PtrTo (X-1)

•Better yet:
•prev = PtrTo(X-1); curr = prev->next;

CSE 143 M

M-711/6/00

Relinking for Insert (p.176)
•Given prev and curr (via PtrTo function):

•newPtr->next = curr;
•prev->next = newPtr;

•Inserting at beginning is a special case (X=0)
•newPtr ->next = head;
•head = newPtr;

•What about inserting at end of list?
•How to recognize?
• Is the code special?

M-811/6/00

Final Picture
•curr, prev, and newPtr are local variables that go
away

•head and size persist inside the object

4 8 16head

size 4

curr

prev

newPtr

9

M-911/6/00

ListDelete
•Similar considerations
•PtrTo is helpful again
•The deleted node should have delete operator
applied
•or memory leak results

•Deleting from beginning of list a special case
•changes head value

•Full code: textbook p. 177

M-1011/6/00

Variations on a theme
•Doubly linked lists

•Point backwards as well as forwards

•Makes finding the previous pointer a breeze

•Takes a little more space and complexity to manage the
extra pointers

•Circular lists
•Can remove some special cases

•Head and tail pointers.
•Good for "queues" (always add at tail, always remove at
head)

•Dummy nodes at front or rear
•Can remove some special cases

