
CSE 143 H

H-110/9/00

CSE 143

List (Vector) Implementation
[Chapter 3]

H-210/9/00

Textbook example: List ADT
•A list... names, groceries, numbers, etc.

•What do you need to do?
• Create and destroy a list

• Find out how long it is

• Add (insert) new items to it
• Delete items

• Look at (retrieve) items

•ADT: specify the "what" without giving away the "how"

•Build a solid wall around the object
• The defined operations are the only ways through the wall

H-310/9/00

Steps to Turn This Into C++
•Let’s call it Vector

•we’ll allow indexing by position
• textbook calls it listClass

•1. Identify and clarify the operations
•by studying the application(s) that will use the class

•2. Map the ADT operations to public class methods
•3. Decide on the data representation

• internal variables and their structure

•4. Implement the methods in a .cpp file
Why don’t we just tell the client to use an array, by
the way?

H-410/9/00

Vector ADT Operations
•Original analysis of a list suggests these abstract
operations:
•CreateVector()
•DestroyVector()
•VectorIsEmpty()
•VectorLength()
•VectorInsert(NewPosition, NewItem)
•VectorDelete(Position)
•VectorRetrieve(Position, DataItem)

•Question: what is a "position"?
• integer index for Vector (usually beginning/end for list)

H-510/9/00

Map To Class Methods
•Make some adjustments and turn these into
public methods
•CreateVector() //use a constructor for this
•DestroyVector() //use a "destructor"

(not currently needed)
•VectorIsEmpty() //return a bool
•VectorLength() //return an int
•VectorInsert(NewPosition, NewItem)
//need to clarify the argument types, especially
NewItem

•VectorDelete(Position) // return the item deleted
•VectorRetrieve(Position) // return the item retrieved

H-610/9/00

Public Member Functions
class Vector {
public:

// construct empty vector

Vector ();

// = “this Vector is empty”

bool isEmpty();
// = # of items in this Vector

int length ();

...

CSE 143 H

H-710/9/00

Public Member Functions
…
// Insert newItem in this Vector at newPosition

void vectorInsert (int newPosition, Item newItem);

// Delete item at specified position and return a copy of it
Item vectorDelete (int position);

// Return a copy of the item at the specified position

Item vectorRetrieve (int position);

...

}

H-810/9/00

Decide on Data Representation

•"Data representation"
•Choose variables, data structures appropriate

•Usually are many possible choices

•We’ll learn more and more useful data structures

• Issue for the vector application
•need to store multiple list items

•need some notion of "position"

•need way to report how many items are in the list

•Make a note of data invariants as they are
discovered

H-910/9/00

Decide on Private Data
•How about: keeping the vector as a private array?

• Items are packed in the array

•Array indexes correspond to "positions"

• Internal variable keeps track of number of items stored

•Complications to watch for
•not all positions are valid

• inserting/deletion requires shifting items

H-1010/9/00

Declaring the Data
class Vector {

public:

// constructors and other methods

...
private:

Item items[MAX_ELEMENTS]; // Vector contents are in

int size; // items[0..size-1]

...

}

•May have to declare some const values

H-1110/9/00

Last Step: Implementing the Methods

•In the .cpp file:
Vector::Vector () {... }
bool Vector::isEmpty () { ...}
etc. etc.

•Take care to preserve the invariants discovered
earlier in the process

•insert and delete will have the trickiest
programming

•See textbook 136-139 for full details

H-1210/9/00

Vector Constructor
class Vector {

public:
Vector();

private:
Item items[MAX_ELEMENTS]; // …
int size; // …

};

Vector::Vector() {
size = 0;

} do we need to initialize items?

CSE 143 H

H-1310/9/00

Vector Equality
•Remember, == is not defined on two classes instances

Let’s define an equals function to compare two vectors

bool Vector::equals(Vector other) {

if (size != other.size)

return false;

for (int i=0; i < size; ++i) {

if (items[i] != other.items[i])

return false;

return true;

}

Footnote: this implementation assumes the items can be
compared with the != operator. What if that's not true??

H-1410/9/00

Vectors: Above and Beyond
•In many real-world lists, the items need to be kept
in order.
•Appointments: in chronological order (date and time)
•Students: by ID or by name
•Books: by ISBN, Title, author, subject, etc.

•One approach: Sort the list when needed
•Another approach

•Keep the list sorted, as part of its invariant
•Consider a new ADT, "SortedVector" with this property
very similar to original vector ADT (from client POV)
see textbook p.118

H-1510/9/00

One Class May Suggest Another

•Vector -> SortedVector
•Would be nice to reuse code somehow (more later)

•Items inside one class may themselves represent
an ADT
•Example: a BookVector (Bookshelf) might require a
Book class
Maybe author, publisher, etc. as well

•Some of the additional classes might be visible to client,
some might not be

H-1610/9/00

Collection ADTs
•Vectors are an example of a "collection" ADT:
something which holds multiple instances of
entities of interest.

•Arrays can be thought of as a primitive collection
ADT.

•Later we’ll see Stacks, Queues, Trees, and other
collection ADTs

•We’ll also see more and more advanced
programming techniques for implementing them.
•What's wrong with what we have??

