
CSE 143 B1

B1-19/28/00

CSE 143

Basic Stream I/O

Appendix A

B1-29/28/00

Input/Output Concepts

•Concepts should be review!
•New syntax, but same fundamental concepts

•input vs. output, read vs. write
•conversion between characters in a stream and
C/C++ data values (types) in a program

•File concepts
•what is a file?

• file name vs. file variable

•open, close
•end-of-file

B1-39/28/00

What’s a Computer?

Central
Processing

Unit

Main
Memory

Monitor

Network

Disk

Keyboard
mouse

B1-49/28/00

Stream I/O

•The basic C++ I/O library is built
around the concept of streams.
•both for keyboard/monitor and for files

•Old C-style printf, scanf, etc.
library is still available, but….
•Mixing the two is bad news
•You must use only stream I/O in
CSE143

B1-59/28/00

What is a Stream?
A stream is just a sequence of characters,
nothing else:

S m y t h e , J . 9 7 0 1 4 3

anInputStream Input cursor

W e l c o m e t o

anOutputStream Output cursor

C++ Program

input via >> operator

output via << operator

6 4

B1-69/28/00

Only characters?!
•Wait a minute... if the stream is only characters,
how can we read or write integers, or doubles, or
strings?

•Answer: the library functions convert other types
to and from characters.

Example: the stream contains
45

That is two characters, not a number!
cin >> i; converts the two characters into an
integer and stores it in the integer variable i.

CSE 143 B1

B1-79/28/00

Well-Known Streams
•Global streams defined in <iostream> :

•cin: standard input stream (usually keyboard)
•cout: standard output stream (usually screen)
•cerr: standard error stream (also usually
directed to the screen)

•Programs can open other streams to/from
files and other devices.

B1-89/28/00

<< Review
For output streams, << is the “put to” or
"insertion" operator

#include <iostream>

using namespace std;

…

int count = 23;

cout << “Hello, World!” << ‘\n’;

// endl: same as ‘\n’, but flushes output

cout << “The count is ” << count << endl;

B1-99/28/00

>> Review
For input streams, >> is the “get from” or
"extraction" operator

#include <iostream>
using namespace std;
…
int x, ID;
char Name[40];

cin >> x;

cin >> Name >> ID;

// Can read multiple items on one line

// Note: no &’s as with scanf

•<< and >> are aware of the types of the
data B1-109/28/00

How Stream Input Works

Rule: With simple types: leading
whitespace is skipped

int ID;
char Name[40];
char ch;

cin >> ID; // interprets as integer
cin >> ch; // reads a char
cin >> Name; // interprets as character string,

// stopping at trailing whitespace

B1-119/28/00

Built-in vs other types
•cin and cout understand the basic C++ types,
including strings

•They do not understand other arrays or user-
defined types (structs, classes, enums, etc)

•But... it is possible to “overload” << and >> to
understand your classes!

•Eventually you will be able to write
cout << myFavoriteBook

•and have it do something reasonable

B1-129/28/00

Stream States
•All streams have a “state”.
•All streams are objects (instances of stream
classes)

•The stream can be used in an expression to
check its state

if (!cin)
cerr << “error or eof on cin” << endl;

•We’ll learn other ways to manipulate stream
states later in the course

CSE 143 B1

B1-139/28/00

End-Of-File State
•Means there is no more input in the stream
•eof is a state; it’s not a special value in the stream
•eof is most often used with files
•eof with keyboard input?

•User signals by typing a special key combination

•CNTL-Z, CNTL-D, etc. depends on operating system

•The special key is NOT sent to the program. The eof
status is what is detected.

B1-149/28/00

Input Errors
•Stream input “fails” if the next thing in the
input has the wrong format or if there is no
more data (end of file).

•If an input operation fails, the variable
involved is not changed.

if (cin >> k)
cout << “new value for k read ok”;

else
cout << “input failed; ”

<< “k not changed”;

B1-159/28/00

Input Errors (cont)
•Once a stream input operation has failed,
any further operations will also fail until the
stream state is cleared.

// suppose next input is “xyz”
cin >> k; // fails (why?); k unchanged

cin >> j; // cin state not good, so
// nothing happens

cin.clear(); // cin can be used for
// input again

B1-169/28/00

Example: Copy Integers
•This program copies integers from cin to
cout until an input operation fails. Each
integer is written on a separate output line.
#include <iostream>
using namespace std;

int main() {
int j;

while (cin >> j)
cout << j << ‘\n’;

return 0;
}

B1-179/28/00

Next Step: Files
•Review: File is a named collection of data on disk
•Basic idea of using files in C++: Attach a file to a
stream!
•Then the characters of that file become the characters of
the stream.

•Use class (type) ifstream for input text files,
ofstream for output text files.

B1-189/28/00

Stream Classes
•cin and cout are defined in <iostream>.
•Library <fstream> contains similar classes
for file I/O

•Input stream classes:
•istream: console input (cin)
•ifstream: file input

•Output stream classes
•ostream: console output (cout, cerr)
•ofstream: file output

CSE 143 B1

B1-199/28/00

File Operations (Abstract)
•“open”

•Creating a variable to represent the file

•Allows you to access the file’s contents

•“read”
•getting data from the file, similar to cin >> var;

•“write”
•storing data to a file, similar to cout << var;

•“close”
•Tells the OS you’re finished with a file

•Can’t do any more reading/writing

•Might lose data if you forget to close!
B1-209/28/00

Opening a File
•The simplest way to open a file is to give the
(disk) file name as a parameter when the file
stream variable is created:

ifstream infile (“testdata.txt”);

•This does two things
•Declares a variable named infile of type ifstream

•Opens it so it accesses the file named testdata.txt in the
current directory.

B1-219/28/00

Opening & Closing Files
•The parameter giving the file name may be an
array of characters containing a C null-terminated
string (not, unfortunately a C++ string)

char filename[256];

cout << “enter file name: ”;

cin >> filename;

ifstream infile (filename);

•Files are automatically closed when exiting the
function that contains the file variable declaration

B1-229/28/00

Testing the Stream
•The stream can be tested as if it were a boolean

if (mystream)...
•Two typical occasions for testing:
1. Right after opening, to see if the open worked

ifstream dfile (“data.txt”);
if (dfile) cout << “OK”; else cout << “bad”;

2. While processing, to see if end of file
while (dfile) //is the stream still good?

{ keep reading data}

B1-239/28/00

File Copy Example (1)
#include <iostream>
#include <fstream>
using namespace std;

void main() {
ifstream inFile("input.txt”); // open input
ofstream outFile("output.txt”); // open output

// quit if files not opened
if (!inFile || !outFile) {

cout << “file open failed” << endl;
return 1;

}

B1-249/28/00

File Copy Example (2)
string word;

// copy words to output file, one word per line
while (inFile >> word) {

outfile << word << endl;
}

// files closed automatically when main exits
}

