
CSE 143 Au00 Additional Problems for Sections
 November 28, 2000

For each of the following sequences of code, use O() notation to describe the running time in
terms of N. Give a lower bound for the running time; don’t just answer that all are O(2n).

1. for (int j = 1; j <= N; j++) {
 int k = 1;

 while (k < j)
 k = k * 2;
 cout << j << “ “ << k << endl;
}

 Running time is O(____n log n______)

Followup: Suppose the statement k=k*2; were replaced with k=k*3; . How would
this change the running time, if any? No change; still O(n log n).

What do you think this code fragment does? For each integer from 1 to N, prints that
integer and the smallest power of 2 greater than or equal to that integer.

2. double avg(double m[N][N], int r, int c) {
 double sum = 0.0;
 for (int j = r-1; j <= r+1; j++)
 for (int k = c-1; k <= c+1; k++)
 sum = sum + m[j][k];
 return sum/9.0;
 }

double puzzle[N][N];

 ...
 for (int r = 1; r < N-1; r++)
 for (int c = 1; c < N-1; c++)
 puzzle[r][c] = avg(puzzle,r,c);

 Running time is O(____n2______)

Followup: Does it make any difference whether puzzle is or is not copied each time
the function is called? (i.e., Does it matter if the parameter mechanism is call-by-value
instead of call-by-reference?) Yes. If the array is not copied, each function call requires
constant time, and there are O(n2) function calls. If the array were copied, then each
function call would require O(n2) work by itself. Since there are O(n2) calls, the total
work is O(n2) times O(n2), or O(n4).

