
H1 - 1

© 1999 UW CSE

© 1999 UW CSE
H1-1

4/23/99

CSE / ENGR 142
Programming I

Loop Development

© 1999 UW CSE

© 1999 UW CSE
H1-2

4/23/99

Goals
•Getting from problem statement to working code

•Systematic loop design and development

•Recognizing and reusing code patterns

© 1999 UW CSE
H1-3

4/23/99

Example: Rainfall Data

•General task: Read daily rainfall amounts and print
some interesting information about them.
•Input data: Zero or more numbers giving daily rainfall
followed by a negative number (sentinel).
•Example input data: 0.2 0.0 0.0 1.5 0.3 0.0 0.1 -1.0
•Empty input sequence: -1.0 [or -17.42 or …]
•What sort of information might we want to print?

© 1999 UW CSE
H1-4

4/23/99

Rainfall Analysis

Some possibilities:
•Print the data
•Print number of data values in the input
•Print maximum daily rainfall
•Print number of days with no rain
•Print average daily rainfall
•Print median daily rainfall (half of the days have
more, half less)
•Print number of days where rainfall amount is above
the average for all days in the input
What’s similar about these? Different?

© 1999 UW CSE
H1-5

4/23/99

#include <stdio.h>
int main (void) {
 double rain; /* current rainfall from input */
 /* read rainfall amounts and print until sentinel */
 scanf(“%lf”, &rain);
 while (rain >= 0.0) {
 printf(“%f ”, rain);
 scanf(“%lf”, &rain);
 }
 return 0;
}

Example: Print Rainfall Data

© 1999 UW CSE
H1-6

4/23/99

#include <stdio.h>
int main (void) {
 double rain; /* current rainfall from input */
 int ndays; /* number of days of input */
 /* read rainfall amounts and count number of days */
 ndays = 0;
 scanf(“%lf”, &rain);
 while (rain >= 0.0) {
 ndays = ndays + 1;
 scanf(“%lf”, &rain);
 }
 printf(“# of rainy days = %d.\n”, ndays);
 return 0;
}

Example: # Days in Input

H1 - 2

© 1999 UW CSE

© 1999 UW CSE
H1-7

4/23/99

#include <stdio.h>
int main (void) {
 double rain; /* current rainfall */

 /* read rainfall amounts */

 scanf(“%lf”, &rain);
 while (rain >= 0.0) {
 printf(“%f ”, rain);
 scanf(“%lf”, &rain);
 }

 return 0;
}

Is There a Pattern Here?
#include <stdio.h>
int main (void) {
 double rain; /* current rainfall */
 int ndays; /* # input numbers */
 /* read rainfall amounts */
 ndays = 0;
 scanf(“%lf”, &rain);
 while (rain >= 0.0) {
 ndays = ndays + 1;
 scanf(“%lf”, &rain);
 }
 printf(“# of rainy days = %d.\n”, ndays);
 return 0;
}

© 1999 UW CSE
H1-8

4/23/99

Program Schema
•A program schema is a pattern of code that solves a
general problem.
•Learn patterns through experience, observation.
•If you encounter a similar problem, reuse the pattern.
•Work the problem by hand to gain insight into
possible solutions. Ask yourself “what am I doing?”
•Check your code by hand-tracing on simple test data.

© 1999 UW CSE
H1-9

4/23/99

#include <stdio.h>
int main (void) {
 double variable; /* current input */
 declarations;
 initial;
 scanf(“%lf”, &variable);
 while (variable is not sentinel) {
 process;
 scanf(“%lf”, &variable);
 }
 final;
 return 0;
}

Schema: Read until Sentinel

© 1999 UW CSE
H1-10

4/23/99

Schema Placeholders
•In the schema, variable, declarations, sentinel, initial,
process, and final are placeholders.
•variable holds the current data from input. It should
be replaced with an appropriately named variable.
•sentinel is the value that signals end of input.
•declarations are any additional variables needed.
•initial is any statements needed to initialize variables
before any processing is done.
•process is the “processing step” - work done for
each input value.
•final is any necessary operations needed after all
input has been processed.

© 1999 UW CSE
H1-11

4/23/99

#include <stdio.h>
int main (void) {
 double rain; /* current rainfall */
 declarations;
 initial;
 scanf(“%lf”, &rain);
 while (rain >= 0.0) {
 process;
 scanf(“%lf”, &rain);
 }
 final;
 return 0;
}

Schema instance for Rainfall

© 1999 UW CSE
H1-12

4/23/99

Loop Development
Some useful ideas
•Do you know an appropriate schema? Use it!
•Declare variables as you discover you need them.

–When you create a variable, write a comment describing
what’s in it!

•Often helps to start with
–What has to be done to process one more input value?

–What information is needed for final?

•Often easiest to write initial last
– initial is “what’s needed so the loop works the 1st time”

– Often obvious after writing rest of the loop

H1 - 3

© 1999 UW CSE

© 1999 UW CSE
H1-13

4/23/99

 #include <stdio.h>
 int main (void) {

 double rain; /* current rainfall */
declarations:

 initial:

 scanf(“%lf”, &rain);
 while (rain >= 0.0) {
 process:

 scanf(“%lf”, &rain);
 }
 final:

 return 0;
 }

Print Rainfall Data

© 1999 UW CSE
H1-14

4/23/99

 #include <stdio.h>
 int main (void) {

 double rain; /* current rainfall */
declarations:

 initial:

 scanf(“%lf”, &rain);
 while (rain >= 0.0) {
 process:

 scanf(“%lf”, &rain);
 }
 final:

 return 0;
 }

Print # Days With No Rain

© 1999 UW CSE
H1-15

4/23/99

 #include <stdio.h>
 int main (void) {

 double rain; /* current rainfall */
declarations:

 initial:

 scanf(“%lf”, &rain);
 while (rain >= 0.0) {
 process:

 scanf(“%lf”, &rain);
 }
 final:

 return 0;
 }

Print Largest Daily Rainfall

© 1999 UW CSE
H1-16

4/23/99

 #include <stdio.h>
 int main (void) {

 double rain; /* current rainfall */
declarations:

 initial:

 scanf(“%lf”, &rain);
 while (rain >= 0.0) {
 process:

 scanf(“%lf”, &rain);
 }
 final:

 return 0;
 }

Print Average Daily Rainfall

© 1999 UW CSE
H1-17

4/23/99

 #include <stdio.h>
 int main (void) {

 double rain; /* current rainfall */
declarations:

 initial:

 scanf(“%lf”, &rain);
 while (rain >= 0.0) {
 process:

 scanf(“%lf”, &rain);
 }
 final:

 return 0;
 }

Print Average Daily Rainfall (2)

© 1999 UW CSE
H1-18

4/23/99

Event-Driven Programming
•Modern programs tend to be “event-driven”

–Program starts, sets itself up

–Wait for an event to happen

•event = mouse click, key press, timer, menu selection, etc.

–Perform requested operation (“handle” event)

–Resume waiting for the next event

•The GP142 graphics package we’ll use follows this
model
•Can also be used with text (console) input

H1 - 4

© 1999 UW CSE

© 1999 UW CSE
H1-19

4/23/99

Simple Command Interpreter
Read in "commands" and execute them.

Input - single characters

a -- execute command A by calling process_A()

b -- execute command B by calling process_B()

q -- quit

Pseudocode for main loop:

get next command

if a, execute command A

if b, execute command B

if q, signal quit

© 1999 UW CSE
H1-20

4/23/99

Command Interpreter
Loop Control

repeat until quit signal

use variable “done” to indicate when done

set done to false

while not done

body statements

if quit command, set done to true

© 1999 UW CSE
H1-21

4/23/99

#define FALSE 0
#define TRUE 1
int main(void)
{

char command; /* current input command */
int done; /* == “quit command has been entered” */
done = FALSE;
while (! done){
 /* get command from user */

printf(“Input command: “);
scanf(“ %c”, &command);
if (command == ‘a’ || command == ‘A’){

process_A(); /* Execute command A */
} else if (command == ‘b’ || command == ‘B’) {

process_B(); /* Execute command B */
} else if (command == ‘q’ || command == ‘Q’) {

done = TRUE; /* User wants to quit */
} else }

printf(“Unrecognized command\n”);
}

}
return 0;

}

Command InterpreterProgram

