
F - 1

F-14/11/99

CSE / ENGR 142
Programming I

Functions, Part I

© 1999 UW CSE

F-24/11/99

Chapter 3

Read All!

3.1: Reusing program parts

3.2: Built-in math functions

3.3: Top-Down Design

3.4: Functions with no parameters

3.5: Functions with parameters

F-34/11/99

Thought For Today

“A lazy person
invented the wheel”

F-44/11/99

A Problem

•Suppose we are writing a program
that displays messages on the
screen.
•We’d like to display rows of *********
to separate sections of output.

#include <stdio.h>
int main(void)
{

/* produce some output */
...
/* print banner line */
printf(“********************”);
printf(“********************\n”);

/* produce more output */
...
/* print banner line */
printf(“********************”);
printf(“********************\n”);

/* produce even more output */
...
/* print banner line */
printf(“********************”);
printf(“********************\n”);

/* produce final output */
...
return (0) ;

}

Solution

F-64/11/99

Critique

•Redundant code
•What if we want to change the
display

•e.g., to print a blank line before and
after each line of ***********?

•What if we want to print banner lines
in some other program?

F - 2

F-74/11/99

The Solution: Functions

•Definition: A function is a named code
sequence.
•A function can be executed by using its
name as a statement or expression.
•The function may have parameters -
information that can be different each
time the function is executed.
•The function may compute and return a
value.

F-84/11/99

Advantages (1)

•Able to package a computation we
need to perform over and over again
as a single, named piece of code.
•Write once, use many times.
•Able to reuse the same operation in
other programs.
•If changes are needed, they only
have to be done once, in one place.

F-94/11/99

Advantages (2)

• Many programs are far to large to
understand all at once.

• Functions give us a way to break a large
program into smaller pieces, each of which
can largely be written and understood apart
from the rest of the program.

F-104/11/99

Common Functions
We have already seen and used several functions:

int main (void)

{

 return(0);

}

printf (“control”, list);

scanf (“control”, &list);

Function
definition
for main()

Function calls to
printf() and scanf()

F-114/11/99

More common functions
C’s standard math library functions:

sqrt, pow, log, exp, sin, cos, fabs, …

#include <math.h>

...

x = sin((2.0 * PI) / 17.0);

z = sqrt(2.0 * y);

F-124/11/99

Your own functions
vs. pre-written functions

• Pre-written functions are commonly
packaged in "libraries"
– Every standard C compiler comes with a set of

standard libraries

• Remember #include <stdio.h>?
– Tells the compiler you will use the "standard I/O

library"
– You may include as many libraries as needed

• You can define your own functions in your
programs

F - 3

F-134/11/99

New Solution to Problem

/* print banner line */
void print_banner (void)
{

printf(“***************”);
printf(“***************\n”);

}

Function definition

F-144/11/99

New Solution (cont)
int main (void)
{
 /* produce some output */
 …
 print_banner();

 /* produce more output */
 …
 print_banner();

 /* produce even more output */
 …
 print_banner();

 /* produce final output */

 return(0);
}

Empty () is required
when a void function
is called.

F-154/11/99

Defining your own functions

•You define a function by giving its
name and writing the code that is
executed when the function is called.

/* write separator line on output*/

void print_banner (void)

{

printf(“***************”);

printf(“***************\n”);

}

function body
(statements to be
executed).
A function can have
ANY number of ANY
kind of statements.

function name

heading comment

F-164/11/99

void

•The keyword void has two different
rolls in this function definition.

/* write separator line on output*/

void print_banner (void)

{

printf(“***************”);

printf(“***************\n”);

}

indicates that the function
has no parameters.

indicates that the function does
not return (have) an output value.

F-174/11/99

Calling a Function

•To execute the function, it is called or invoked from
within a program or another function:

•Note: a function that
does not return a value
can be called wherever
a statement is allowed.

int main (void)
{
 …
 print_banner();

 return(0);
}

F-184/11/99

Terminology

int main (void)
{
 /* produce some output */
 …
 print_banner();
 /* produce more output */
 …
 print_banner();
 /* produce even more output */
 …
 print_banner();
 /* produce final output */

 return(0);
}

"main() is the caller."

” print_banner()” is
the callee."

•"main() calls print_banner() (3 times)." / "main()
invokes print_banner() (3 times)"

•” print_banner() is called by main()." / ” print_banner()
is called from main()."

F - 4

F-194/11/99

print_banner {
}

/* print banner line */
void print_banner (void)
{

printf(“***************”);
printf(“***************\n”);

}

int main (void)
{

...
print_banner() ;
...
print_banner() ;
...

 return(0) ;
}

Function Control Flow

main {

print_banner() ;

print_banner() ;

}

print_banner {
}

F-204/11/99

Marching Orders:
Control Flow
All C programs:

1. Start at main() /*no matter where main is! */

2. Continue in top-to-bottom order, statement by
statement, unless the order is changed by:

function call

function return

if

loops

will see soon

F-214/11/99

Picturing the Call and Return

main ()

print_banner () print_banner () print_banner ()

←call

ret
urn→

F-224/11/99

Simplify and Complete the Picture:
"Static Call Graph"

main()

print_banner()

printf()

operating
system

F-234/11/99

Function Type and Value

•A function can return a value.

•Like all values in C, a function return value has a type.

•The function is said to have the type of its returned value.

/* ask user for input number and */
/* return next number entered. */
int prompt (void)
{
 int k;
 printf(“please enter a number: ”);
 scanf(“%d”, &k);
 return (k);
}

function type (type of returned
value). We say “ prompt() is a
function of type int” or “ prompt()
returns an int.”

return statement

returned value
F-244/11/99

Calling a Function

•A value-returning function is called by including it
in an expression.

int main (void)
{
 int k, j;
 j = prompt();
 k = prompt();
 printf(“the value of %d + %d is %d.”,
 j, k, j+k);
 return(0);
}

•Note: a value-
returning function
can be used
anywhere an
expression of the
same type can be
used

F - 5

F-254/11/99

More on return
•In a value-returning function (result type is not void),
return does two distinct things:

•1. specify the value returned by that execution of the function

•2. terminate that execution of the function.

•In a void function:

•return is optional at the end of the function body.

•return may also be used to terminate execution of the function
explicitly.

•No return value should appear following return

F-264/11/99

return in void functions
/* print banner line */
void print_banner (void)
{

printf(“***************”);
printf(“***************\n”);
return;

}
optional

/* do something */
void example (void)
{

int no_reason_to_continue;
 ...

if (no_reason_to_continue)
return;

...
}

terminate function execution
before reaching the end

F-274/11/99

Function Parameters
•It is very often useful if a function can operate on
different data values each time it is called. Such
values are function (input) parameters

•"input" here is not I/O as we defined it earlier

•The function specifies its inputs as parameters in
the function declaration.

/* Yield area of circle with radius r */
double area (double r)
{
 return (3.14 * r * r);
}

parameter

F-284/11/99

Arguments
•The function call must include a matching
argument for each parameter.

•When the function is executed, the value of the
argument is substituted for the parameter.

int main (void)

{ ...

 z = 98.76;

 x = 34.575 * area (z/2.0);

 …

 return (0);

}

/* Yield area of circle with radius r */

double area (double r)
{

 return(3.14 * r * r);
}

parameter passing

F-294/11/99

Terminology
•Many people (including the textbook authors) use
the term formal parameter instead of parameter and
actual parameter instead of argument. We will try
to stick to parameter and argument for simplicity,
but the other terminology will probably slip in from
time to time.

•People often refer to replacing a parameter with
the argument in a function call as “passing the
argument to the function”.

F-304/11/99

Control and Data Flow
•When a function is called: (1) control transfers to
the function body; (2) argument values are copied;
(3) the function executes; (4) control and return
value return to the point of call.

int main (void)
{
 double x, y, z;
 y = 6.0;
 x = area(y/3.0) ;

 z = 3.4 * area(7.88) ;

 return(0);
}

/* Yield area of circle with radius r */

double area (double n)

{ return(3.14 * r * r); }2.0

12.56
7.88

194.976...

F - 6

F-314/11/99

Style Points
•The comment above a function must give a
complete specification of what the function does,
including the significance of all parameters.

•Someone wishing to use the function should be
able to cover the function body and find everything
they need in the function heading and comment.

/* Yield area of circle with radius r */
double area (double r)
{
 return (3.14 * r * r);
}

F-324/11/99

Multiple Parameters

•a function may have more than one parameter
•arguments must match parameters in number,
order, and type

double avg (double total, int count)

{

 return(total / (double) count) ;

}

int m,n;

double gpt, gpa;

gpt = 3.0+3.3+3.9;

gpa = avg (gpt, 3);

...

arguments parameters

F-334/11/99

Rules for Using Functions

•Arguments must match parameters:

•in number

•in order

•in type

•A function can only return one value.

•but it might contain more than one return statement

•In a function with return type T, the return
expression must be of type T.

•A function with return type T can be used anywhere
an expression of type T can be used.

F-344/11/99

/* Yield area of circle with radius r */
double circle_area (double r)
{
 double x, area1;
 x = r * r ;
 area1 = 3.14 * x ;
 return(area1);
}

Local Variables
•A function can define its own local variables.

•The locals have meaning only within the function.

•Each execution of the function uses a new set of locals

•Local variables cease to exist when the function returns

•Parameters are also local.

local variables
parameter

F-354/11/99

Declaring vs Using

Review: In general in C, identifiers (names of
things) must be declared before they are
used.

• Variables:
int turnip_trucks;
…
turnip_trucks = total_weight / weight_per_truck;

• #define constants:
#define TAX_RATE 0.07
…
tax_owed = TAX_RATE * income;

F-364/11/99

Order for Functions
Function names are identifiers, so… they too must
be declared before they are used:

#include <stdio.h>

void fun2 (void) { ... }

void fun1 (void) { ...; fun2(); ... }

int main (void) { ...; fun1(); ... return 0; }

fun1 calls fun2, so fun2 is defined before fun1, etc.

Alternative: Instead of writing the complete function
use function prototypes to declare a function so it
can be used.

F - 7

F-374/11/99

Function Prototypes

• Looks same as start of a function definition,
but ; instead of {…}

 double calculate_tax
(double income, double rate);

• Write a function prototype near the top of the
program
– Can use the function anywhere thereafter

• Fully define the function wherever convenient
• Highly recommended to aid program

organization
F-384/11/99

Why Have Functions?

•Reuse of program text
•code it once but use it many times
•saves space and improves correctness

•Centralize changes
•changes or bug fixes made in one place

•Better program organization
•easier to test, understand, and debug

•Modularization for team projects

•each person can work independently

F-394/11/99

Why Have Functions (II)?

Functions raise the level of
discourse

• rise above the “a+b*c” level

• see the forest, not the trees
• reshape a program into meaningful units

– “hypotenuse”, not sqrt(a*a+b*b)
– “volume”, not 1.04719*r*r*h

F-404/11/99

Why Have Functions (III)?

•That’s how modern programming is
done!
•API: Application programming interface

–Library of functions for a particular
purpose

•graphics, sound, video, windowing, statistics,
etc. etc.

•Modern programming relies heavily on
libraries and APIs

F-414/11/99

Example: Washer Area

/* Yield area of washer with given */
/* inner and outer radius. */
double washer_area (double inner, double outer)
{

double area1, area2, washer ;

area1 = circle_area (inner) ;
area2 = circle_area (outer) ;
washer = area2 - area1 ;
return (washer) ;

}

#include <stdio.h>
#define PI 3.0
double circle_area (double r)
 {

double x, area1;

x = r * r ;
area1 = PI * x ;
return (area1) ;

}

double washer_area (double inner, double outer)
{

double area1, area2, washer ;

area1 = circle_ area (inner) ;
area2 = circle_ area (outer) ;
washer = area2 - area1 ;
return (washer) ;

}

int main(void)
{

double inner, outer, y ;

printf (“Input inner radius and outer diameter: ”) ;
scanf (“ %lf %lf ”, &inner, &outer) ;
y = washer_area (inner, outer/2.0) ;

printf (“ %f ”, y) ;

return (0) ;
}

Local Variables: putting it all together

F - 8

F-434/11/99

Showing How
Functions are Related

main

washer_area

circle_area

printf scanf

A "static call graph" shows who calls who F-444/11/99

Local Variables of main

 main
inner outer y

F-454/11/99

 washer_area

inner outer area1 area2 washer

Parameters and local variables of washer_area

F-464/11/99

 circle_area

r x area1

Parameters and local variables of circle_area

F-474/11/99

 circle_area

r x area1

Parameters and local variables of circle_area

F-484/11/99

 main
inner outer y

 washer_area

inner outer area1 area2 washer

 circle_area

r x area1

F - 9

F-494/11/99

Local Variables:
Summary
Formal parameters and variables declared in a
function are local to it:

cannot be accessed (used) by other functions
(except by being passed as actual parameters or return values)

Allocated (created) on function entry.

De-allocated (destroyed) on function return.

Formal parameters initialized by copying value of
actual parameter. (“Call-by-value”)

A good idea? YES!

localize information; reduce interactions.

F-504/11/99

Surgeon General’s Warning

•C lets you define variables that are not inside
any function.

–Called "global variables."

•In this course: global variables are verboten!
–Only local variables are allowed in HW programs

–Note: #define symbols are not variables

•Global variables have legitimate uses, but
often are

–bad style

–a crutch to avoid using parameters

F-514/11/99

Functions: Summary

•May take several parameters.

•May return one value.

•An excellent tool for program structuring.

•Provide abstract services: the caller cares
what the functions do, but not how.

•Make programs easier to write, debug, and
understand.

