
L

l-1
10/30/99

CSE / ENGR 142
Programming I

Sorting

© 1998, 1999 UW CSE

l-2
10/30/99

Sorting:
•The problem:

Given an array a[0], a[1], ... a[n-1],
reorder entries so that
a[0] <= a[1] <= ... <= a[n-1]

•Many different ways to do it (algorithms)
•Lots of applications

•faster search (allows binary search)
•ordering hits in web search engine
•merging address lists
•etc.

l-3
10/30/99

Sorting Problem
• What we want: Data sorted in order

• Initial conditions

sorted: a[0]<=a[1]<=…<=a[n-1]

0 n

a

unsorted

0 n

a

l-4
10/30/99

• General situation

• Step:
– Find smallest element x in a[k..n-1]
– Swap smallest element with a[k], then

increase k

smallest elements, sorted

Selection Sort

0 k n

a remainder, unsorted

smallest elements, sorted

0 k n

a x

l-5
10/30/99

Subproblem: Find Smallest
/* Yield location of smallest element in a[k..n-1] */
int min_loc (int a[], int k, int n) {

int j, pos; /* a[pos] is smallest element */
/* found so far */

pos = k;
for (j = k + 1; j < n; j = j + 1)

if (a[j] < a[pos])
pos = j;

return pos;
}

l-6
10/30/99

Selection Sort
/* Sort a[0..n-1] in non-decreasing order (rearrange

elements in a so that a[0]<=a[1]<=…<=a[n-1]) */
int sel_sort (int a[], int n) {

int k, m;
for (k = 0; k < n - 1; k = k + 1) {

m = min_loc(a,k,n);
swap(&a[k], &a[m]);

}
}

L

l-7
10/30/99

Example

3 12 -5 6 142 21 -17 45a

-17 12 -5 6 142 21 3 45a

-17 -5 12 6 142 21 3 45a

l-8
10/30/99

Example (cont)

-17 -5 3 6 142 21 12 45a

-17 -5 3 6 12 21 142 45a

-17 -5 3 6 142 21 12 45a

l-9
10/30/99

Example (concl)

-17 -5 3 6 12 21 45 142a

-17 -5 3 6 12 21 142 45a

l-10
10/30/99

Analysis
•How many steps are needed to sort n things?

•For each swap, we have to search the remaining
array; length is proportional to original array length
•Need n search/swap operations
•Total number of steps proportional to n2

•Can we do better?
•Selection, insertion, bubble sorts all proportional to n2

•Quicksort (CSE143), heap sort, others, proportional
to n log n, which is much smaller for big jobs (large n);
best we can do in general case
•Special cases, can do even better: Sort exams by
score: drop each exam in one of 101 piles; work is
proportional to n

