
K.1

K1-1
10/30/99

CSE / ENGR 142
Programming I

Linear & Binary
Search

© 1998, 1999 UW CSE

K1-2
10/30/99

Searching

• Searching = looking for something
• Searching an array is particularly

common
– Goal: determine if a particular value is in

the array

• If the array is unsorted:
– start at the beginning and look at each

element to see if it matches

K1-3
10/30/99

Linear Search
/* If x appears in a[0..n-1], return its location, i.e.,

return k so that a[k]==x. If x not found, return -1 */
int search (int a[], int n, int x) {

int loc = 0;
while (loc < n && a[loc] != x)

loc++;
if (loc < n)

return loc
else return -1;

}

K1-4
10/30/99

Linear Search

• Test:
search(v, 8, 12)
search(v, 8, 15)

• Note: Condition in while relies on
short-circuit evaluation of && (i.e.,
a[loc] might not be defined if loc>=n).

3 12 -5 6 142 21 -17 45v

K1-5
10/30/99

Can we do better?

• "Binary search" works if the array is
sorted
1. Look for the target in the middle.
2. If you don’t find it, you can ignore half of

the array, and repeat the process with
the other half.

• Example: Find first page of Pizza
listings in the yellow pages

K1-6
10/30/99

Binary Search Strategy
• What we want: Find split between

values larger and smaller than x:

• Situation while searching

• Step: Look at a[(L+R)/2]. Move L or R
to the middle depending on test.

<= x > x

0 L R n

a

<= x > x?

0 L R n

a

K.1

K1-7
10/30/99

Binary Search Strategy
• More precisely

Values in a[0..L] <= x
Values in a[R..n-1] > x
Values in a[L+1..R-1] are unknown

<= x > x?

0 L R n

a

K1-8
10/30/99

Binary Search
/* If x appears in a[0..n-1], return its location, i.e.,

return k so that a[k]==x. If x not found, return -1 */
int bsearch (int a[], int n, int x) {

int L, R, mid;
___________________ ;
while (_______________) {

}
_________________ ;

}

K1-9
10/30/99

Binary Search
/* If x appears in a[0..n-1], return its location, i.e.,

return k so that a[k]==x. If x not found, return -1 */
int bsearch (int a[], int n, int x) {

int L, R, mid;
___________________ ;
while (_______________) {

mid = (L+R) / 2;
if (a[mid] <= x)

L = mid;
else R = mid;

}
_________________ ;

}
K1-10

10/30/99

Loop Termination
/* If x appears in a[0..n-1], return its location, i.e.,

return k so that a[k]==x. If x not found, return -1 */
int bsearch (int a[], int n, int x) {

int L, R, mid;
___________________ ;
while (L+1 != R) {

mid = (L+R) / 2;
if (a[mid] <= x)

L = mid;
else R = mid;

}
_________________ ;

}

K1-11
10/30/99

Initialization
/* If x appears in a[0..n-1], return its location, i.e.,

return k so that a[k]==x. If x not found, return -1 */
int bsearch (int a[], int n, int x) {

int L, R, mid;
L = -1; R = n;
while (L+1 != R) {

mid = (L+R) / 2;
if (a[mid] <= x) L = mid;
else R = mid;

}
_________________ ;

}

K1-12
10/30/99

Return Result
/* If x appears in a[0..n-1], return its location, i.e.,

return k so that a[k]==x. If x not found, return -1 */
int bsearch (int a[], int n, int x) {

int L, R, mid;
L = -1; R = n;
while (L+1 != R) {

mid = (L+R) / 2;
if (a[mid] <= x) L = mid;
else R = mid;

}
if (L >= 0 && a[L] == x) return L
else return -1;

}

K.1

K1-13
10/30/99

Binary Search

• Test: bsearch(v,8,3);

-17 -5 3 6 12 21 45 142v

0 1 2 3 4 5 6 7

K1-14
10/30/99

Binary Search

• Test: bsearch(v,8,17);

-17 -5 3 6 12 21 45 142v

0 1 2 3 4 5 6 7

K1-15
10/30/99

Binary Search

• Test: bsearch(vec,8,143);

-17 -5 3 6 12 21 45 142vec

0 1 2 3 4 5 6 7

K1-16
10/30/99

Binary Search

• Test: bsearch(vec,8,-143);

-17 -5 3 6 12 21 45 142vec

0 1 2 3 4 5 6 7

K1-17
10/30/99

Is it worth the trouble?
• Suppose you had 1000 elements
• Ordinary search would require maybe

500 comparisons on average
• Binary search

– after 1st compare, throw away half, leaving
500 elements to be searched.

– after 2nd compare, throw away half, leaving
250. Then 125, 63, 32, 16, 8, 4, 2, 1 are left.

– After at most 10 steps, you’re done!

What if you had 1,000,000 elements??

