
G

G-110/4/99

CSE / ENGR 142
Programming I

Conditionals

© 1999 UW CSE

G-210/4/99

Chapter 4

Read Sections 4.1-4.5, 4.7-4.9

4.1: Control structure preview

4.2: Relational and logical operators

4.3: if statements

4.4: Compound statements

4.5: Example

4.7: Nested if statements

4.8: switch statements

G-310/4/99

Conditional Execution

•The power of computers lies to a large extent
with conditionals.

•A conditional statement allows the computer to
choose a different execution path depending on
the value of a variable or expression, e.g.:

•if the withdrawal is more than the bank
balance, print an error

•if today is my birthday, add one to my age

•if my grade is greater than 3.5, go to party

•if x is bigger than y, then store x in z
otherwise store y in z

G-410/4/99

Conditional ("if ") Statement

if (condition) statement ; The statement is executed if
and only if the condition is
true.

if (x < 100) x = x + 1 ;

if (withdrawal_amt > balance) print_error() ;

if (temperature > 98.6)
printf(“You have a fever.\n”);

if (month == birthmonth && day == birthday)

my_age = my_age + 1 ;

G-510/4/99

Conditional Flow Chart
if (x < 100) x = x + 1 ;

y = y + 1;

X < 100 ? x = x + 1 ;

y = y + 1;

yes

no

G-610/4/99

•Also called "logical" or "Boolean" expressions
•Made up of variables, constants, arithmetic
expressions, and the "relational operators":
in C: < , <=, > , >= , == , !=

Math symbols: < , ≤ , > , ≥ , = , ≠

air_temperature > 0.0
98.6 <= body_temperature
marital_status == ‘M’
divisor != 0

Conditional Expressions

some conditional
expressions

G

G-710/4/99

Boolean Operators in
Conditional Expressions

Boolean operators && || !
and or not

Examples:

temp > 90.0 && humidity > 50.0

! (salary < 30000 || exemptions < 4)

G-810/4/99

Value of conditional expressions

• Remember that "expressions are things that have
a value."

• What is the value of a conditional expression??
• Answer: we think of it as TRUE or FALSE

– Most of the time, TRUE or FALSE is all you have to think
about - and how you should think about it.

• Under the hood in C, it’s really an integer
– FALSE is 0
– TRUE is any value other than 0

• frequently 1
• 1 is result of relational operator (<, <=, >=, ==, !=) when

relation is true

G-910/4/99

if statements

The semantics of if in C follow the English meaning
pretty well.

Conditionally execute a statement if the conditional
expression evaluates to TRUE (non-zero)

if (temperature > 98.6 || blood_pressure > 160)

printf(“You are sick.\n”);

G-1010/4/99

temperature = 98.1;

if (temperature > 98.6)

printf(“You have a fever.”) ;

pulse = 80;

temperature = 99.7;

if (temperature > 98.6)

printf(“You have a fever.”);

pulse = 80;

Flow of Control

G-1110/4/99

Multiple actions

More than one conditional action?

Use a compound statement:

if (temperature > 98.6)

{

printf (“You have a fever. \n”);

aspirin = aspirin − 2 ;

}
G-1210/4/99

Compound Statement
•Also called "block."
•Groups together statements so that they are
treated as a single statement:
{

statement1 ;
statement2 ;
...

}
•Can contain any number of statements
(including none)

{ } is a valid statement!
•Can include any kind of statements.

G

G-1310/4/99

Principles for combining and
substituting statements

1. You may use a compound statement anywhere
that a single statement may be used.

2. Anywhere that a statement is allowed in C, any
kind of statement can be used.

Among other things, these principles imply that
compound statements can be nested to any
depth.

G-1410/4/99

Compound Example

Cash machine program fragment:

if (balance >= withdrawal)

{

balance = balance - withdrawal ;

dispense_funds (withdrawal) ;

}

•What if { } omitted?

•What if () omitted?

G-1510/4/99

Another Example

Compute the absolute value |x| of x and
put the answer in variable abs:

if (x >= 0)

abs = x;

if (x < 0)

abs = -x;

abs = x;

if (x < 0)

abs = -x;

if (x >= 0)
abs = x;

else abs = -x;
G-1610/4/99

Absolute value as a function

Function to Compute Absolute Value |x|:

int abs (int x)

{

if (x < 0)

x = − x ;

return (x) ;

}

G-1710/4/99

if - else

Print error message:

if (balance >= withdrawal) {

balance = balance - withdrawal ;

dispense_funds (withdrawal) ;

}

else {

printf (“Insufficient Funds! \n ”) ;

}

no ; here

G-1810/4/99

if - else Control Flow

balance >= withdraw ?

balance = balance - withdrawal ;

dispense_funds (withdrawal) ;
printf (“Insufficient Funds! \n ”) ;

yesno

/* arrive here whether condition
is TRUE or FALSE*/

G

G-1910/4/99

Flow of Control

bal = 25.0 ;

withdrawal = 20.0 ;

if (bal >= withdrawal) {

bal = bal - withdrawal ;

dispense (withdrawal) ;

} else {

printf(“Insufficient...”) ;
}
eject_card () ;

bal = 25.0 ;

withdrawal = 40.0 ;

if (bal >= withdrawal) {

bal = bal - withdrawal ;

dispense (withdrawal) ;

} else {

printf(“Insufficient...”) ;
}
eject_card () ;

G-2010/4/99

Formatting if statements

if (condition) if (condition)
statement; statement;

else
statement;

if (condition) { if (condition) {
statement t1; statement t1;
statement t2; statement t2;
... ...

} } else {
statement e1;
statement e2;
...

}

G-2110/4/99

if (condition) if (condition)
{ {

statement t1; statement t1;
statement t2; statement t2;
... ...

} }
else
{

statement e1;
statement e2;
...

}

Alternative Formatting
of ifs

G-2210/4/99

Nested ifs
#define BILL_SIZE 20

if (balance >= withdrawal) {

balance = balance - withdrawal ;
dispense_funds (withdrawal) ;

} else {

if (balance >= BILL_SIZE)
printf (“Try a smaller amount. \n ”) ;

else
printf (“Go away! \n ”) ;

}

G-2310/4/99

if (x == 5)
if (y == 5)

printf (“Both are 5. \n ”) ;
else

printf (“x is 5, but y is not. \n ”) ;
else

if (y == 5)
printf (“y is 5, but x is not. \n ”) ;

else
printf (“Neither is 5. \n ”) ;

Nested ifs , Part II

G-2410/4/99

Dangling else

if (x == 5)
if (y == 5)

printf (“Both are 5. \n”) ;
else /* misleading */

printf (“Is anybody 5?\n”) ; /* indentation */

if (x == 5) {
if (y == 5)

printf (“Both are 5. \n”) ;
else

printf (“Is anybody 5?\n”) ; /*x is 5, y is not */
}

G

G-2510/4/99

Matching elses with ifs

•Each else matches some if in the same block

if { if if else { if if else else } else } else

•Within the same block read the ifs and elses left
to right matching each else to the closest
unmatched if

if { if if else { if if else else } else } else

•Some ifs may not be matched to any else

if if if else else

if if else if

G-2610/4/99

< 15,000

 15,000, < 30,000

 30,000, < 50,000

 50,000, < 100,000

 100,000

0%

18%

22%

28%

31%

income tax

Tax Example

Print the % tax based on income:

G-2710/4/99

Simple Solution
if (income < 15000)

printf(“No tax.”);

if (income >= 15000 && income < 30000)
printf(“18%% tax.”);

if (income >= 30000 && income < 50000)
printf(“22%% tax.”);

if (income >= 50000 && income < 100000)
printf(“28%% tax.”);

if (income >=100000)
printf(“31%% tax.”);

Mutually exclusive conditions - only one will be true

G-2810/4/99

Cascaded ifs

if (income < 15000) if (income < 15000)
printf(“No tax”); printf(“No tax”);

else else if (income < 30000)
if (income < 30000) printf(“18%% tax.”);

printf(“18%% tax.”); else if (income < 50000)
else printf(“ 22%% tax.”);

if (income < 50000) else if (income < 100000)
printf(“ 22%% tax.”); printf(“28%% tax.”);

else else
if (income < 100000) printf(“31%% tax.”);

printf(“28%% tax.”);
else

printf(“31%% tax.”);

Order is important. Conditions are evaluated in order given.

G-2910/4/99

The First Character

/* read 3 characters; print the smallest */ c1 c2 c3 first

char c1, c2, c3, first; ? ? ? ?
printf (“Enter 3 chars> “) ;
scanf (“%c%c%c”, &c1, &c2, &c3) ; 'h' 'a' 't' ?

first = c1 ; 'h' 'a' 't' 'h'
if (c2 < first) (true)

first = c2 ; 'h' 'a' 't' 'a'

if (c3 < first) (false)
first = c3 ; ---

printf (“Alphabetically, the first of the 3 is %c”,
first) ; (prints 'a')

G-3010/4/99

Function first_character

char first_character(char c1, char c2, char c3)
{

char first ;
first = c1 ;
if (c2 < first)

first = c2 ;
if (c3 < first)

first = c3 ;
return(first);

}

G

G-3110/4/99

Sort 2 Characters:
Top Down Design
Input two characters

Rearrange them in sorted order

Output them in sorted order

Input: ra Output: ar

Input: nt Output: nt

G-3210/4/99

Sort 2 Characters:
Refinement
Input c1, c2
If c2 comes before c1 in alphabet

Swap c1 and c2
Output c1, c2

Input c1, c2
If c2 comes before c1 in alphabet

Save c1 in temporary
Assign c2 to c1
Assign temporary to c2

Output c1, c2

Swap

c1 c2

c1 c2

temp

Why not
c1 = c2;
c2 = c1;

?

G-3310/4/99

Sort 2 Characters
Program

/* sort 2 characters and print in sorted order */ c1 c2 temp
char c1, c2, temp ; ? ? ?
printf (“Enter 2 chars: ”) ;
scanf (“%c%c”, &c1, &c2) ; ' d’ ’a’ ?
if (c2 < c1) { /* swap if out of order */ (true)

temp = c1 ; ' d’ ’a’ ’d’

c1 = c2 ; ' a’ ’a’ ’d’

c2 = temp ; ' a’ ’d’ ’d’
}
printf (“In alphabetical order, they are %c%c”, (prints “ad”)

c1, c2) ;

G-3410/4/99

Complex Conditionals

•AND (&&), OR (||), NOT (!)

•Review: like arithmetic expressions, conditional
expressions have a value:

•TRUE or FALSE (non-zero or zero)

•When using relational (<, ==, etc.) and Boolean (&&, ||, !)
operators: TRUE is 1; FALSE is 0

•values are actually int (C has no Boolean type). Can be
used in int expressions:

•m = (z >= 0.0) ; /* m is 1 if z is positive */

G-3510/4/99

if (age < 25)
if (sex == ‘M’)

insurance_rate = insurance_rate * 2 ;

if ((age < 25) && (sex == ‘M’))
insurance_rate = insurance_rate * 2 ;

Nested if vs. AND (&&)

G-3610/4/99

if ((dwi > 0) || (tickets > 3))
insurance_rate = insurance_rate * 2 ;

int high_risk ;
...
high_risk = (age < 25 && sex == ‘M’) ;
if (high_risk)

insurance_rate = insurance_rate * 2 ;

And (&&), Or (||)

G

G-3710/4/99

Truth Tables for &&, ||

A "truth table" lists all possible combinations
of values, and the result of each combination

P Q P && Q P || Q
T T T T
T F F T
F T F T
F F F F

P and Q stand for any conditional expression
G-3810/4/99

Not (!)

int high_risk ;

...

high_risk = (age < 25 && sex == ‘M’) ;

if (high_risk) {
} else {

printf (“Cheap rates. \n”) ;
}

if (! high_risk)

printf (“Cheap rates. \n”) ;

P !P

T F

F T

G-3910/4/99

DeMorgan’s Laws
if (! (age < 25 && sex == ‘M’))

printf (“Cheap rates. \n”) ;

is equivalent to

if (age >= 25 || sex != ‘M’))

printf (“Cheap rates. \n”) ;

More generally,

! (P && Q) is equivalent to (!P || !Q)

! (P || Q) is equivalent to (!P && !Q)

G-4010/4/99

P Q (P&&Q) !(P&&Q) !P !Q (! P || !Q)
T T
T F
F T
F F

Proof of DeMorgan

Is it really true that !(P&&Q) == (!P || !Q) ?

G-4110/4/99

Operator Precedence

High (Evaluate First) Low (Evaluate Last)

! Unary - * / % - + < > <= >= == != && ||

a = 2;
b = 4;
z = (a + 3 >= 5 && !(b < 5)) || a * b + b != 7 ;

G-4210/4/99

if (x > 10) ; /* no action or "null statement" */

printf(“x > 10 ”) ; /* Always done (see why?) */

Recall that any non-zero integer value is "true".

if (x) printf (“x is nonzero”) ; /*works, but bad style */

if (x = 10) /* should be ==, but it’s not a syntax error! */

printf(“x is 10 ”) ;

Pitfalls of if, Part I

G

G-4310/4/99

The World’s Last C Bug

status = check_radar () ;
if (status = 1)

launch_missiles () ;

G-4410/4/99

Pitfalls of if, Part II

No: if (0 <= x <= 10)
printf (“x is between 0 and 10. \n ”) ;

Yes: if (0 <= x && x <= 10)
printf (“x is between 0 and 10. \n ”) ;

G-4510/4/99

Pitfalls of if, Part III

& is different from &&
| is different from ||

Beware == and != with doubles:

double x ;

x = 30.0 * (1.0 / 3.0) ;

if (x == 10.0) ...

G-4610/4/99

Longwinded if
/* How many days in a month? */

if (month == 1) /* Jan */
days = 31 ;

else if (month == 2) /* Feb */
days = 28 ;

else if (month == 3) /* Mar */
days = 31 ;

else if (month == 4) /* Apr */
days = 30 ;

... /* need 12 of these */

G-4710/4/99

Clearer Style

if (month == 9 || month == 4 || /* Sep, Apr */
month == 6 || month == 11) /* Jun, Nov */

days = 30 ;

else if (month == 2) /* Feb */

days = 28 ;

else

days = 31; /* All the rest */

G-4810/4/99

Clearest: switch
/* How many days in a month? */

switch (month) {
case 2: /* February */

days = 28 ;
break ;

case 9: /* September */
case 4: /* April */
case 6: /* June */
case 11: /* November */

days = 30 ;
break ;

default: /* All the rest have 31 ... */
days = 31 ;

}
printf (“There are %d days in that month. \n ”, days) ;

G

G-4910/4/99

switch: Flow of Control

month = 6 ;
switch (month) {
case 2: /* February */

days = 28 ;
break ;

case 9: /* September */
case 4: /* April */
case 6: /* June */
case 11: /* November */

days = 30 ;
break ;

default: /* All the rest have 31 ... */
days = 31 ;

}
printf (“There are %d days in that month. \n ”, days) ;

G-5010/4/99

switch
switch (control expression)
{
case-list1

statements1
break;

case-list2
statements2
break;

.

.
default:

statements
}

a "case-list" is a
series of one or
more "case"s

case constant1:
case constant2:
.
.
case constantN:

G-5110/4/99

Pitfalls of switch

month = 6 ;
switch (month) {
case 2: /* February */

days = 28 ; /* break missing */
case 9: /* September */
case 4: /* April */
case 6: /* June */
case 11: /* November */

days = 30 ; /* break missing */
default: /* All the rest have 31 ... */

days = 31 ;
}
printf (“There are %d days in that month. \n ”, days) ;

G-5210/4/99

char marital_status ;
printf (“Enter marital status (M,S): ”) ;
scanf (“%c”, &marital_status) ;
switch (marital_status) {
case ‘m’:
case ‘M’:

printf (“Married \n”) ;
break ; int or char expression

case ‘s’:
case ‘S’:

printf (“Single \n”) ;
break ;

default:
printf (“Sorry, I don’t recognize that code. \n”) ;

}

switch on char

G-5310/4/99

Conditionals:
Summary

•if (logical expression) {
the “then” statements

}
•if (logical expression) {

the “then” statements
} else {

the “else” statements
}
•comparisons < <= > >= == !=

•combining && || !
•DeMorgan’s Laws

•switch: several cases based on single int or char value

no “;”

Parens

