
C

C-19/30/99

CSE / ENGR 142
Programming I

Arithmetic 
Expressions

© 1999 UW CSE

C-29/30/99

Assignment Statement 
Review

double area, radius;

area = 3.14 * radius * radius;

assignment statement expression

C-39/30/99

Expressions
•Expressions are things that have values

•A variable by itself is an expression: radius

•A constant by itself is an expression: 3.14

•Often expressions are combinations of variables, 
constants, and operators.

area = 3.14 * radius * radius;

•The overall value of the expression is based on the 
data and operators specified.

•Data means the integer or floating-point constants and/or 
variables in the expression.

•Operators are things like addition, multiplication, etc.
C-49/30/99

The Big Picture

• In an assignment statement,
• the expression (right hand side) is first 

evaluated, 

• then its value is assigned to (stored in) the 
assignment variable (left hand side).

• How this happens depends on the data 
types in the expression, the operators, and 
the type of the assignment variable.

my_int =  int1 + int2;                    int1

int2

my_int1

3

C-59/30/99

Unary and Binary

• Binary: operates on two things
3.0 * b
zebra + giraffe

• Unary: operates on one thing
-23.4

• C operators are unary or binary
• Then what about expressions like 

a+b+c?
C-69/30/99

Expressions with 
doubles

REVIEW:

Doubles are floating-point values that represent 
real numbers within the computer.

Constants of type double:

0.0,  3.14,  -2.1,  5.0,  6.02e23,  1.0e-3

not 0  or  17

Operators on doubles:
unary:  -
binary: +,  -,  *,  /



C

C-79/30/99

Expressions with 
doubles: Examples

double height, base, radius, x, c1, c2 ;

Sample expressions (not statements):

0.5 * height * base

( 4.0 / 3.0 ) * 3.14 * radius * radius * radius

- 3.0 + c1 * x - c2 * x * x

C-89/30/99

Expressions with ints

REVIEW:

An integer represents a whole number with no 
fractional part.  

Constants of type int:

0,  1,  -17, 42              not 0.0  or  1e3

Operators on ints:
unary:  -
binary: +,  -,  *,  /, %

C-99/30/99

/ is integer division: no remainder, no rounding
299 / 100 2 , 6 / 4 1 , 5 / 6 0

% is mod or remainder:
299 % 100 99 , 6 % 4 2 , 5 % 6 5

int division and remainder

Integer operators include integer division and 
integer remainder.

2      
100 )299 

200

99

C-109/30/99

Expressions with ints: 
Examples

Given: total_minutes 359

Find: hours 5
minutes 59

Solution:

hours     =  total_minutes / 60 ;

minutes =  total_minutes % 60 ;

C-119/30/99

A Cautionary Example

int radius;

double area;

.

.

.
area  = ( 22 / 7 ) * radius * radius;   

C-129/30/99

Why Use ints?    Why 
Not doubles Always?

•Sometimes only ints make sense

•“give me the 15 th spreadsheet cell”

•“give me the (14.9999998387) th cell” ??
•Doubles may be inaccurate representing “ints”

•In mathematics 3 • 15 • (1/3) = 15
•In computer arithmetic 
3.0 * 15.0 * (1.0 / 3.0)  might be 14.999999997

•Last, and least 
• arithmetic with doubles is often slower
•doubles often require more memory



C

C-139/30/99

Operator Precedence 

Precedence determines the order of evaluation 
of operators.

Is  a + b * a - b equal to ( a + b ) * ( a - b ) or 
a + ( b * a ) - b ??      

And does it matter?

Try this:

4 + 3 * 2 - 1

(4 + 3) * (2 - 1) =

4 + (3 * 2) - 1 =
C-149/30/99

Operator Precedence 

Precedence rules:
1.  do ( )’s first, starting with innermost
2. then do unary minus (negation):  -
3.  then do multiplicative ops: *, /, %
4.  lastly do additive ops: binary +, -

C-159/30/99

Associativity

Associativity determines the order among 
consecutive operators of equal precedence

Is  a / b * c equal to a / ( b * c ) or ( a / b ) * c ??

Most C arithmetic operators are "left associative", 
within the same precedence level

a / b * c equals (a / b) * c

a + b - c + d equals  ( ( a + b ) - c ) + d

C also has a few operators that are right 
associative.

C-169/30/99

The Full Story...
• C has about 50 operators & 18 

precedence levels…
• A "Precedence Table" shows all the 

operators, their precedence and 
associativity.
– Look on inside front cover of our textbook
– Look in any C reference manual

• When in doubt: check the table
• When faced with an unknown operator: 

check the table

C-179/30/99

Precedence and
Associativity: Example

Mathematical formula:
________

- b + √ b2 - 4 a c
----------------------

2 a

C formula:

(- b + sqrt ( b * b - 4.0 * a * c) ) / ( 2.0 * a )

C-189/30/99

Expressions & Values

b * b - 4.0 * a * c
2.5 2.5 -1.0 15.2

* *
6.25 -4.0

*
-60.8

-
67.05



C

C-199/30/99

What is  2 * 3.14 ?

Compiler will implicitly (automatically) convert int to 
double when they occur together:

int + double double + double (likewise  -, *, /)

2*3 * 3.14 (2*3) * 3.14 6 * 3.14 6.0 * 3.14 18.84

2/3 * 3.14 (2/3) * 3.14 0 * 3.14 0.0 * 3.14 0.0

We strongly recommend you avoid mixed types:
e.g., use  2.0 / 3.0 * 3.14  instead.

Mixed Type Expressions

C-209/30/99

Conversions in 
Assignments

int total, count ;

double avg;

total = 97 ;    count = 10 ;

avg = total / count ;               /*avg is 9.0*/

total = avg; /*BAD*/

implicit 
conversion 
to double

C-219/30/99

Explicit Conversions 
(Section 7.1)

•To be explicit in the program, you can use a cast 

• convert the result of an expression to a different type.

•Format: (type) expression

•Examples:

(double) myage

(int) (balance + deposit)

•This does not change the rules for evaluating the 
expression (types, etc.)

C-229/30/99

Using Casts

int total, count ;

double avg;

total = 97 ;    count = 10 ;

avg = total / count ; /*avg is 9.0*/

avg = (double) total / (double) count ;
/*avg is 9.7*/

avg = (double) (total / count) ; /*avg is 9.0*/

explicit 
conversion 
to double

implicit 
conversion 
to double

C-239/30/99

C is "Strongly Typed"

•Every value has a type
•C cares a lot about what the type of each 
thing is
•Lots of cases where types have to match up
•Start now: be constantly aware of the type of 
everything in your programs!

C-249/30/99

Basic Lessons
•Write in the clearest way possible for the 
reader.
•Keep it simple;  for very complex expressions, 
break them up into multiple statements.
•Use parentheses to indicate your desired 
precedence for operators where it may be 
ambiguous.
•Use explicit casts to avoid implicit conversions 
in mixed mode expressions and assignments.
•Be aware of types.


