
B

9/29/99 B-1

CSE / ENGR 142
Programming I

Variables, Values,
and Types

© 1998 UW CSE

9/29/99 B-2

Chapter 2 Overview

• Chapter 2: Read Sections 2.1-2.6, 2.8.
– Long chapter, short snippets on many topics
– Later chapters fill in detail

• Specifically:
– Types, variables, values
– Expressions, assignment
– Input / Output (scanf, printf)
– Programming style

• You’ll learn enough to write a simple but useful C
program!

9/29/99 B-3

Review:
What’s a Computer?

Central
Processing

Unit

Main
Memory

Monitor

Network

Disk

Keyboard
mouse

9/29/99 B-4

Memory and Data

• All data created and manipulated by a
program is stored in the computer’s
memory

• We think of memory as being organized as
a sequence of words.

• Each word has three attributes:
– its location or address (its “name”)
– its value (the data stored in that location)
– its type (the kind of value stored there)

9/29/99 B-5

Memory and Data

Location Value

6: ’m'

5: 3.1416

4: -112

3: 214

2: 'y'

1: 3

•location 5 holds the
value 3.1416

•location 3 holds the
value 214

9/29/99 B-6

Variables

• If we had to name memory locations explicitly by
number we'd go crazy, so...

• In our programs we name memory symbolically,
by defining variables .

• Each variable must be declared .

• The declaration indicates the name and the type
of the variable.

• The type indicates how to interpret the value stored
there.

B

9/29/99 B-7

Declaring Variables
int months;

Integer variables represent whole numbers:

1, 17, -32, 0 Not 1.5, 2.0

double pi;
Floating point variables represent real numbers:

3.14, -27.5, 6.02e23, 5.0 Not 3

char first_initial, middle_initial, marital_status;
Character variables represent individual keyboard
characters:

’a’, ’b’, ’M’, ’0’ , ’9’ , ’#’ , ’ ’ Not "Bill"

9/29/99 B-8

Memory, Variables,
Values, and Types

Location Value Type Possible variable name

6: ’m' char first_initial

5: 3.1416 double almost_pi

4: -112 int my_balance

3: 214 int your_balance

2: 'y' char answer

1: 3 int Image3D

9/29/99 B-9

Identifiers
• " Identifiers " are names for things in a program

• for examples, names of variables

• In C, identifiers follow certain rules:
• use letters, numerals, and underscore (_)
• do not begin with a numeral
• cannot be r eserved words
• are "case-sensitive"
• can be arbitrarily long but...

• Style point: Good choices for identifiers can be
extremely helpful in understanding programs
• Often useful: noun or noun phrase describing variable

contents 9/29/99 B-10

Reserved words
• Certain words have a "reserved"

(permanent, special) meaning in C
– We’ve seen int, double, char already
– Will see a couple of dozen more eventually

• These words always have that special
meaning, and cannot be used for other
purposes.
– Cannot be used names of variables
– Must be spelled exactly right
– Sometimes also called “keywords”

9/29/99 B-11

Declarations vs Statements

• Programs are made up of “declarations” and
“statements”

• Declarations declare or define something
– We’ve already seen variable declarations
– Later we’ll see constant declarations and function

declarations

• Statements tell the CPU to do something
– We’re about to see our first kind of statement
– Eventually we’ll see about a dozen other kinds of

statements

9/29/99 B-12

Storing values in
variables

• A variable declaration gives a name to a
memory location, but… how do we place a
value in that memory location?

• Placing a value in a location is called
"storing"

• One way to store a value is with the
assignment statement.
– Later we’ll see that scanf can also store values

into a variable.

B

9/29/99 B-13

Assigning Values

int area, length, width;
length = 16;
width = 32;
area = length * width;

•An assignment statement places a value into a
variable.
•The assignment may specify a simple value to be
stored, or an expression

•The result: store the value of the expression on the
right into the variable on the left.

/* declaration of 3 variables */
/* "length gets 16" */
/* "width gets 32" */
/* "area gets length times width" */

9/29/99 B-14

C Program Structure
#include <stdio.h>
int main(void)
{

variable declarations

program statements

return(0);
}

The shaded parts will be in every program (we’ll explain later)

9/29/99 B-15

Problem Solving and
Program Design (Review)

•Clearly specify the problem
•Analyze the problem
•Design an algorithm to solve the problem
•Implement the algorithm (write the
program)
•Test and verify the completed program

•The test-debug cycle
•Maintain and update the program

9/29/99 B-16

Example Problem:
Fahrenheit to Celsius
Problem (specified):

Convert Fahrenheit temperature to Celsius

Algorithm (result of analysis):

Celsius = 5/9 (Fahrenheit - 32)

What kind of data (result of analysis):

double fahrenheit, celsius;

9/29/99 B-17

Fahrenheit to Celsius (I)
An actual C program
#include <stdio.h>
int main(void)
{

double fahrenheit, celsius;

celsius = (fahrenheit - 32.0) * 5.0 / 9.0;

return(0);
}

9/29/99 B-18

Fahrenheit to Celsius (II)
#include <stdio.h>

int main(void)
{

double fahrenheit, celsius;
printf("Enter a Fahrenheit temperature: ");
scanf("%lf", &fahrenheit);
celsius = (fahrenheit - 32.0) * 5.0 / 9.0;
printf("That equals %f degrees Celsius.",

celsius);
return(0);

}

B

9/29/99 B-19

Running the Program

Enter a Fahrenheit temperature: 45.5
That equals 7.500000 degrees Celsius

Program “trace:”
fahrenheit celsius

after declaration ? ?
after first printf ? ?
after scanf 45.5 ?
after assignment 45.5 7.5
after second printf 45.5 7.5

9/29/99 B-20

Fahrenheit to Celsius (III)
#include <stdio.h>

int main(void)
{

double fahrenheit, celsius;
printf("Enter a Fahrenheit temperature: ");
scanf("%lf", &fahrenheit);
celsius = fahrenheit - 32.0 ;
celsius = celsius * 5.0 / 9.0 ;
printf("That equals %f degrees Celsius.",

celsius);
return(0);

}

9/29/99 B-21

Assignment step-by-step

celsius = celsius * 5.0 / 9.0 ;

1. Evaluate right-hand side

a. Find current value of celsius 13.5

b. Multiply by 5.0 67.5

c. Divide by 9.0 7.5

2. Assign 7.5 to be the new value of celsius

(old value 13.5 of celsius is lost.)

9/29/99 B-22

my_age = my_age+1

•The same variable may appear on both sides of an
assignment statement!

my_age = my_age + 1 ;
balance = balance + deposit ;

•The old value of the variable is used to compute
the value of the expression, before the variable is
changed.
•You wouldn’t do this in math!

9/29/99 B-23

Note on lecture examples
• Slides often leave out important details

my_age = my_age + 1;
• This is a legal C statement only if:

– my_age has previously been declared in the
program

– my_age has a proper type (e.g. int)
– the statement occurs in a legal position;
– the full program has “ int main (void)”, etc., etc.

• Use your creative powers and common sense
to deduce what’s missing in the examples!

9/29/99 B-24

Initializing variables
• Initialization means giving something a

value for the first time.
• Anything which changes the value of a

variable is a potential way of initializing it.
– For now, that means assignment statement

• General rule: variables have to be
initialized before their value is used.
– Failure to initialize is a common source of

bugs.

• Variables in a C program are not
automatically initialized to 0!

B

9/29/99 B-25

Does Terminology Matter?

• "variable", "reserved word", "initialization",
"declaration", "assignment", etc., etc.

• You can write a complicated program without
using these words

• But you can’t talk about your programs without
them!

• Learn the exact terminology as you go, and get in
the habit of using it.
– Your TAs, consultants, and tutors will bless you…
– … and will be able to better help you

9/29/99 B-26

Declaring vs Initializing

int main (void) {
double income; /*declaration of income,

not an assignment,
not an initialization*/

income = 35500.00; /*assignment to income,
initialization of income,
not a declaration.*/

printf ("Old income is %f", income);
income = 39000.00; /*assignment to income,

not a declaration,
not an initialization */

printf ("After raise: %f", income);
}

9/29/99 B-27

Compilers, Linkers, etc.

library
(ANSI)

header
(stdio.h)

executable

program

debugger

c

o

m

p

i

l

e

r

l

i

n

k

e

r

source
code

object
code

010
110

.c file

