
Part I: Multiple Choice (30 points)
Answer all of the following questions. READ EACH QUESTION CAREFULLY. Fill the correct bubble
on your mark-sense sheet. Each correct question is worth 2 points. Choose the one BEST answer for each
question. Assume that all given C code is syntactically correct unless a possibility to the contrary is
suggested in the question.

Remember not to devote too much time to any single question, and good luck!

How many steps would it take for the binary search algorithm presented in
lecture to fail to find the value 80 in the following array? (Count one step
each time it has to compare an array element value to 80.)

 2 8 15 30 40 90 100

A. 1
B. 2
C. 3
D. 4

1.

E. 7

Consider the following statements about selection sort operating on an array
of n elements.

1. After there are 3 elements in the sorted part, it must search through n-3
elements in the unsorted part.

2. Each time it finds the minimum value in the unsorted part, it must search
for the correct place to put it in the sorted part.

3. On any given iteration, it may move up to n-1 elements in the array.

4. The time it takes to execute is proportional to n2.

Which statements are true?

A. Only 1.
B. Only 2
C. 1 and 3
D. 1 and 4

2.

E. Only 4

CSE 142 99AU Final Version C Page 2 of 15

Suppose array X is declared as

 int X[10];

and we want to pass the whole array X to the function print_array defined
by

 void print_array(int ar[], int length) {
 int i;
 for (i = 0; i < length; i = i + 1)
 printf("%d ", ar[i]);
 }

but we want print_array to print ONLY the first 5 elements.

Which of the following is the correct call?

A. print_array(X[10], 5);

B. print_array(&X, 5);

C. print_array(X, 5);

D. print_array(X[5], 5);

3.

E. print_array(&X, 10);

What happens when a file is opened for reading?

A. The file is copied into an array in memory.
B. The file is copied into a struct in memory.
C. An internal file variable is associated with the external file.
D. An internal array is associated with the external file.

4.

E. The I/O system checks for the EOF condition.

CSE 142 99AU Final Version C Page 3 of 15

Consider the following fragment of code:

 nc = 0;
 while (fscanf(mydata, "%c", &c) != EOF) {
 nc = nc + 1;
 }

If c is of type char, nc is of type int, and the file specified in the call to
fscanf has already been opened for reading, what does this code fragment
accomplish?

A. It counts the number of characters in the file.
B. It counts the number of EOF marks in the file.
C. It counts the number of records in the file.
D. It finds the numeric equivalent of the first character in the file.

5.

E. Since the Boolean expression in the while statement is always true, it loops
forever.

Given the factorial function shown below, suppose that factorial(25) has
been executing for some time and it finally reaches the base case where t is
assigned the value 1.

 int factorial (int n) {
 int t;
 if (n <= 1)
 t = 1;
 else
 t = n * factorial(n-1);
 return (t);
 }

 Which of the following statements are true?

A. There are 25 separate instances of factorial on the stack, each with its
own storage for n and for t.

B. There are 26 separate instances of factorial on the stack, each with its
own storage for n and for t.

C. There are 25 values of n on the stack, but only one value of t.
D. There are 25 values of t on the stack, but only one value of n.

6.

E. None of the above can be concluded without knowing what function called
factorial.

CSE 142 99AU Final Version C Page 4 of 15

Consider the is_path function from lecture as given below:

 int is_path(char m[MAXX][MAXY], int x, int y)
 {
 if (m[x][y] == ’F’) {
 return (TRUE);
 } else {
 m[x][y] = ’X’;
 return ((legal_mv(m,x+1,y) && is_path(m,x+1,y)) ||
 (legal_mv(m,x-1,y) && is_path(m,x-1,y)) ||
 (legal_mv(m,x,y-1) && is_path(m,x,y-1)) ||
 (legal_mv(m,x,y+1) && is_path(m,x,y+1)));
 }
 }

Given that there are four recursive calls in is_path, what keeps is_path
from having exponential complexity, i.e. being really, really slow?

(Recall that legal_mv(m,x,y) returns true if <x, y> is a legal move in the
maze m; otherwise it returns false.)

A. Any instance of is_path only makes one of the four recursive calls.
B. No instance of is_path moves both horizontally and vertically.
C. is_path knows where the finish square is and always heads in that

direction.
D. is_path always moves up before moving down.

7.

E. is_path marks the squares it has been to and only visits each one once.

CSE 142 99AU Final Version C Page 5 of 15

Given the following program, what will be the final contents of the array
strbuffer?

 #include <string.h>
 int main(void)
 {
 char strbuffer[8] = "bbbbbbb";
 char str1[] = "odegaard";

 str1[3] = ’\0’;
 strcpy(strbuffer, str1);

 return (0);
 }

A. ’o’ ’d’ ’e’ ’g’ ’a’ ’a’ ’r’ ’d’

B. ’o’ ’d’ ’e’ ’\0’ ’b’ ’b’ ’b’ ’\0’

C. ’o’ ’d’ ’e’ ’\0’ ’a’ ’a’ ’r’ ’d’

D. ’o’ ’d’ ’e’ ’b’ ’b’ ’b’ ’b’ ’\0’

8.

E. ’o’ ’d’ ’e’ ’b’ ’b’ ’b’ ’b’ ’b’

Consider the following structure and function definitions:

 typedef struct {
 double real, imag;
 } complex;

 void f(complex *cp) {
 cp->real = 0.0;
 }

Which of the following choices describes all the statements that are
equivalent to the assignment cp->real = 0.0;?

A. *cp.real = 0.0;

B. (*cp).real = 0.0;

C. *(cp.real) = 0.0;

D. both (a) and (b)

9.

E. both (a) and (c)

CSE 142 99AU Final Version C Page 6 of 15

What output is produced by the following C program?

 #include <stdio.h>

 typedef struct {
 int x, y;
 } pair;

 void fn(int a[], pair p) {
 a[0] = p.x;
 p.y = a[1];
 }

 int main(void) {
 int ay[2] = {1, 2};
 pair pr = {3, 4};
 fn(ay, pr);
 printf("%d %d %d %d\n", ay[0], ay[1], pr.x, pr.y);
 return(0);
 }

A. 1 2 3 4

B. 1 2 3 2

C. 3 2 3 4

D. 3 2 3 2

10.

E. None of the above

CSE 142 99AU Final Version C Page 7 of 15

What output is produced by the following C program?

#include <stdio.h>

int r(int k) {
 if (k > 10)
 return (k-1);
 else
 return (k * r(k+4));
}

int main(void) {
 int a;
 a = r(3);
 printf("%d\n", a);
}

A. 21
B. 70
C. 77
D. 210

11.

E. 231

CSE 142 99AU Final Version C Page 8 of 15

The following code that uses the GP142 package was found in a recycle bin. What
does it do? (You should assume that all variables have suitable declarations, etc.
The question deals with the GP142 event model, not trivial programming details.)

...
n = 0;
quit = FALSE;
while (!quit) {
 event = GP142_await_event(&mouse_x, &mouse_y, &key_pressed);
 switch(event) {
 case GP142_QUIT:
 quit = TRUE;
 break;

 case GP142_MOUSE:
 if (n >= 10) {
 zap_bugs();
 n = 0;
 }
 break;

 case GP142_KBD:
 break;

 case GP142_periodic:
 n++;
 break;

 default:
 break;
 }
}

A. Nothing happens until the user selects quit from the menu, then the program stops.
B. Function zap_bugs() is called after every 10 timer events. The program stops

when quit is selected from the menu.
C. Function zap_bugs() is called every time the mouse button is pressed. The

program stops when quit is selected from the menu.
D. Function zap_bugs() is called the first time the mouse button is pressed. The

function zap_bugs() is then called again after every 10 timer events. The
program stops when quit is selected from the menu.

12.

E. Function zap_bugs() is called when the mouse button is pressed, provided there
have been at least 10 timer events since the program started or since the last time
the button was pressed. The program stops when quit is selected from the menu.

CSE 142 99AU Final Version C Page 9 of 15

How many *’s will the following function print, expressed as a rough or
approximate function of n?

void pr(int n) {
 int i, j;

 for (i = 0; i < n; i++)
 for (j = n; j > 0; j = j/2)
 printf("*");
}

A. log n
B. n

C. n * log n
D. n2

13.

E. 2n

The string library functions strcpy and strcat both copy a source string
into a portion of a destination array. How are they different?

A. Function strcpy can write past the bounds of the destination array, while
function strcat cannot.

B. Function strcat can write past the bounds of the destination array, while
function strcpy cannot.

C. Function strcat copies the source string into the destination array starting
at position 0, while strcpy copies the source string into the destination
array starting at the string terminator character of the first string in the
destination array.

D. Function strcpy copies the source string into the destination array starting
at position 0, while strcat copies the source string into the destination
array starting at the string terminator character of the first string in the
destination array.

14.

E. Function strcpy leaves the source string as is, while function strcat
overwrites it.

CSE 142 99AU Final Version C Page 10 of 15

Which of the following will be the certain result of failing to fill in properly
your name, student ID, section number, and exam version on your Scantron
answer sheet?

A. A score of 0 will be recorded for the multiple choice portion of the final
exam, regardless of how many questions you answer correctly.

B. Your grade in the course will be lower than it might otherwise be since a 0
will be recorded for the multiple choice portion of the final exam.

C. The grade you get for the multiple choice portion will rhyme well with the
name of the Roman emperor Nero. (Hint: Starts with a Z.)

D. You will need to do exceptionally well on the programming portion of this
exam to help offset the 0 that you will earn for the multiple choice portion.

15.

E. all of the above

CSE 142 99AU Final Version C Page 11 of 15

Part II: Programming Questions (29 points)

16. (11 points total) Given the following type definition to represent the coordinates
of a 3D point (x,y,z):

 typedef struct {
 double x, y, z;
 } point3d;

A. (5 points) Write a function

 point3d add3d(point3d p1, point3d p2)

that takes two points (p1 and p2) as its input parameters and returns a third point
that is the vector sum of p1 and p2 as its return value. Note that in mathematics, the
vector sum of (x1, y1, z1) and (x2, y2, z2) is (x1+x2, y1+y2, z1+z2).

(This question continues on the next page.)

CSE 142 99AU Final Version C Page 12 of 15

B. (6 points) Use your function add3d to write another function:

 void translate(point3d old[], point3d new[],
 int npts, point3d trans)

This function is given arrays old and new that each hold npts point3ds (i.e. they
are both arrays of structs) and a single point3d called trans. It should take each
point3d in array old, add the point3d trans to it, and put the result in the
corresponding element of array new. For example, if the first element of old
contains the point (6, 3, -9) and trans has coordinates (1, -1, -3), then the first
element of new should become (7, 2, -12). The same point trans is added to each
element of old to produce the elements of new. (In computer graphics and computer
vision, we call this the translation of a point set; it allows us to move an object in 3D
space.)

CSE 142 99AU Final Version C Page 13 of 15

17. (18 points total) Many engineering and scientific applications represent data as a
2-dimensional grid of values, say temperatures at points on a flat plate or brightness
of pixels (dots) in a video image. A common algorithm on these grids is to smooth
the data by updating the value of each point to be the average of its old value and
the points immediately surrounding it. For example, suppose we had the following
3x3 grid of values for a point and its immediate neighbors:

 5.0 5.0 9.0
 5.0 6.0 9.0
 7.0 8.0 9.0

The smoothing algorithm would update the point in the middle (old value 6.0) to
have a new value of 7.0, which is the average of all 9 numbers in this 3x3 part of the
grid. If the point were on the edge of the grid, the average would include only that
point and its immediate neighbors that actually exist (i.e. are on the grid).

For this problem, complete the definitions of functions avg (in Part A) and smooth
(in Part B) such that they replace each number in the grid with the average of that
number and its immediate neighbors. Notice that, as in Homework 5, you might not
be able to change an element of the grid as soon as you’ve calculated its new value,
because the old value might still be needed to compute the new average values for its
neighbors.

Hint: Be careful not to reference values off the edge of the grid. It might be useful
to define another function that, given a row and column number, returns true or
false depending on whether those numbers specify a a location inside or outside the
grid.

Hint: Keep it simple. Take a minute to think about the problem and sketch a
solution before you write the detailed code.

You may define additional functions at the end of the problem if you want to.

(Parts A and B are on the following pages. Do not write your answers on this page.)

CSE 142 99AU Final Version C Page 14 of 15

/* number of rows and columns in the grid */
/* (Use these names, not the actual numbers.) */
#define NROWS 42
#define NCOLS 17

A. (10 points) Complete the following function so it yields the average of the 3x3 grid
of array elements centered at row r, column c. If grid[r][c] is on the edge of the
grid, the average should include only those array elements that actually exist.

/* = average of 3x3 grid centered at grid[r][c] */
double avg(double grid[NROWS][NCOLS], int r, int c)

CSE 142 99AU Final Version C Page 15 of 15

B. (8 points) Complete the definition of the following function so it updates every
grid element with the average of that element and its immediate neighbors. Use
function avg from Part A to calculate the new value for each element.

/* smooth the values in grid g by replacing each element */
/* with the average of its old value and the values of its */
/* immediate neighbors */
void smooth(double grid[NROWS][NCOLS])

