computeSquares

Method Breakdown
(for loops)
For Loop

```for (initialization; test; update) {
    statements;
}  ```

1. **Initialization**: declare and initialize a loop variable
2. **Test**: an expression that will be evaluated to determine whether to continue the loop or end it
3. **Update**: update the loop variable to make progress toward the test failing
4. **These 3 components determine exactly how many times the for loop will run**
5. **Statements in the body of the loop will be executed each time the test evaluates to true**
Write a method called computeSquares to produce the following text:

1 squared = 1
2 squared = 4
3 squared = 9
4 squared = 16
5 squared = 25
6 squared = 36

**Algorithm: (step by step procedure)**

for the numbers 1, 2, 3, 4, 5, 6:
   Print the number and its squared value on a single line of console output in the specified format

**What we need:**

- for loop with a variable going from 1 to 6 by +1
- println, String literal, loop variable, expressions
public static void computeSquares() {
    for (int number = 1; number <= 6; number++) {
        System.out.println(number + " squared = " + (number * number));
    }
}

Output: Scope of computeSquares
public static void computeSquares() {
    for (int number = 1; number <= 6; number++) {
        System.out.println(number + " squared = " + (number * number));
    }
}

Output: Scope of computeSquares
public static void computeSquares() {
    for (int number = 1; number <= 6; number++) {
        System.out.println(number + " squared = " + (number * number));
    }
}

Output:

Scope of computeSquares

| number | 1 |

1. Perform initialization once
2. is the test true?
3. execute the controlled statement(s)
4. perform the update
5. execute statement after for loop
public static void computeSquares() {
    for (int number = 1; number <= 6; number++) {
        System.out.println(number + " squared = " + (number * number));
    }
}

Output:

Scope of computeSquares

| number | 1 |

1. Perform initialization once
2. Is the test true?
   - no
   - yes
3. execute the controlled statement(s)
4. perform the update
5. execute statement after for loop
public static void computeSquares() {
    for (int number = 1; number <= 6; number++) {
        System.out.println(number + " squared = " + (number * number));
    }
}

Output:
1 squared = 1
public static void computeSquares() {
    for (int number = 1; number <= 6; number++) {
        System.out.println(number + " squared = " + (number * number));
    }
}

Output:

1 squared = 1
public static void computeSquares() {
    for (int number = 1; number <= 6; number++) {
        System.out.println(number + " squared = " + (number * number));
    }
}

Scope of **computeSquares**

| number | 2 |

Output:

1 squared = 1
```java
public static void computeSquares() {
 for (int number = 1; number <= 6; number++) {
 System.out.println(number + " squared = " + (number * number));
 }
}
```

Output:

1 squared = 1
2 squared = 4
public static void computeSquares() {
    for (int number = 1; number <= 6; number++) {
        System.out.println(number + " squared = " + (number * number));
    }
}

Scope of computeSquares

| number | 3 |

Output:

1 squared = 1
2 squared = 4
public static void computeSquares() {
    for (int number = 1; number <= 6; number++) {
        System.out.println(number + " squared = " + (number * number));
    }
}

Output:
1 squared = 1
2 squared = 4
```java
public static void computeSquares() {
 for (int number = 1; number <= 6; number++) {
 System.out.println(number + " squared = " + (number * number));
 }
}
```

Output:

1 squared = 1
2 squared = 4
3 squared = 9
public static void computeSquares() {
    for (int number = 1; number <= 6; number++) {
        System.out.println(number + " squared = " + (number * number));
    }
}

Output:
1 squared = 1
2 squared = 4
3 squared = 9
```java
public static void computeSquares() {
 for (int number = 1; number <= 6; number++) {
 System.out.println(number + " squared = " + (number * number));
 }
}

Output:
1 squared = 1
2 squared = 4
3 squared = 9
```
public static void computeSquares() {
    for (int number = 1; number <= 6; number++) {
        System.out.println(number + " squared = " + (number * number));
    }
}

Output:
1 squared = 1
2 squared = 4
3 squared = 9
4 squared = 16

Scope of computeSquares

<table>
<thead>
<tr>
<th>number</th>
<th>4</th>
</tr>
</thead>
</table>

1. Perform initialization once
2. Is the test true?
   - no
   - yes
3. execute the controlled statement(s)
4. perform the update
5. execute statement after for loop
public static void computeSquares() {
    for (int number = 1; number <= 6; number++) {
        System.out.println(number + " squared = " + (number * number));
    }
}

Output:
1 squared = 1
2 squared = 4
3 squared = 9
4 squared = 16
public static void computeSquares() {
    for (int number = 1; number <= 6; number++) {
        System.out.println(number + " squared = " + (number * number));
    }
}

Output:
1 squared = 1
2 squared = 4
3 squared = 9
4 squared = 16
public static void computeSquares() {
    for (int number = 1; number <= 6; number++) {
        System.out.println(number + " squared = " + (number * number));
    }
}

Output:

1 squared = 1
2 squared = 4
3 squared = 9
4 squared = 16
5 squared = 25
public static void computeSquares() {
    for (int number = 1; number <= 6; number++) {
        System.out.println(number + " squared = " + (number * number));
    }
}

Output:
1 squared = 1
2 squared = 4
3 squared = 9
4 squared = 16
5 squared = 25
public static void computeSquares() {
    for (int number = 1; number <= 6; number++) {
        System.out.println(number + " squared = " + (number * number));
    }
}

Output:
1 squared = 1
2 squared = 4
3 squared = 9
4 squared = 16
5 squared = 25
public static void computeSquares() {
    for (int number = 1; number <= 6; number++) {
        System.out.println(number + " squared = " + (number * number));
    }
}

Output:
1 squared = 1
2 squared = 4
3 squared = 9
4 squared = 16
5 squared = 25
6 squared = 36
```java
public static void computeSquares() {
 for (int number = 1; number <= 6; number++) {
 System.out.println(number + " squared = " + (number * number));
 }
}
```

Output:

- 1 squared = 1
- 2 squared = 4
- 3 squared = 9
- 4 squared = 16
- 5 squared = 25
- 6 squared = 36
public static void computeSquares() {
    for (int number = 1; number <= 6; number++) {
        System.out.println(number + " squared = " + (number * number));
    }
}

Output:

1 squared = 1
2 squared = 4
3 squared = 9
4 squared = 16
5 squared = 25
6 squared = 36