computeSquares

Method Breakdown
(for loops)

For Loop

```
1
2
for (initialization; test; update) \{ statements; \}

Initialization: declare and initialize a loop variable
Test: an expression that will be evaluated to determine whether to continue the loop or end it

Update: update the loop variable to make progress toward the test failing

These 3 components determine exactly how many times the for loop will run

Statements in the body of the loop will be executed each time the test evaluates to true


\section*{Method Description}

\section*{Write a method called computeSquares to produce the following text:}

1 squared = 1
2 squared = 4
3 squared \(=9\)
4 squared \(=16\)
5 squared \(=25\)
6 squared \(=36\)

\section*{Algorithm: (step by step procedure)}
for the numbers \(1,2,3,4,5,6\) :
Print the number and it's squared value on a single line of console output in the specified format

\section*{What we need:}
- for loop with a variable going from 1 to 6 by +1
- println, String literal, loop variable, expressions
```

public static void computeSquares() {
for (int number = 1; number <= 6; number++) {
System.out.println(number + " squared = " + (number * number));
}

```
\}
Output:


\section*{Scope of computeSquares}
public static void computeSquares() \{ for (int number \(=1\); number <= 6; number++) \{ System.out.println(number + " squared = " + (number * number)); \}
\}

\section*{Scope of computeSquares}

Output:

public static void computeSquares() \{ for (int number \(=1\); number <= 6; number++) \{ System.out.println(number + " squared = " + (number * number)); \}
\}

\section*{Scope of computeSquares}
\begin{tabular}{|l|l|}
\hline number & 1 \\
\hline
\end{tabular}

public static void computeSquares() \{ for (int number \(=1\); number <= 6; number++) \{ System.out.println(number + " squared = " + (number * number)); \}
\}

\section*{Scope of computeSquares}
\begin{tabular}{|l|l|}
\hline number & 1 \\
\hline
\end{tabular}

public static void computeSquares() \{ for (int number \(=1\); number <= 6; number++) \{ System.out.println(number + " squared = " + (number * number)); \}
\}

\section*{Scope of computeSquares}
\begin{tabular}{|l|l|}
\hline number & 1 \\
\hline
\end{tabular}

public static void computeSquares() \{ for (int number \(=1\); number <= 6; number++) \{ System.out.println(number + " squared = " + (number * number)); \}
\}

\section*{Scope of computeSquares}
\begin{tabular}{|l|l|}
\hline number & 2 \\
\hline
\end{tabular}

public static void computeSquares() \{ for (int number \(=1\); number <= 6; number++) \{ System.out.println(number + " squared = " + (number * number)); \}
\}

\section*{Scope of computeSquares}
\begin{tabular}{|l|l|}
\hline number & 2 \\
\hline
\end{tabular}

public static void computeSquares() \{ for (int number = 1; number <= 6; number++) \{ System.out.println(number + " squared = " + (number * number)); \}
\}

\section*{Scope of computeSquares}
\begin{tabular}{|l|l|}
\hline number & 2 \\
\hline
\end{tabular}

public static void computeSquares() \{ for (int number \(=1\); number <= 6; number++) \{ System.out.println(number + " squared = " + (number * number)); \}
\}

\section*{Scope of computeSquares}


public static void computeSquares() \{ for (int number = 1; number <= 6; number++) \{ System.out.println(number + " squared = " + (number * number)); \}
\}

\section*{Scope of computeSquares}

public static void computeSquares() \{ for (int number \(=1\); number <= 6; number++) \{ System.out.println(number + " squared = " + (number * number)); \}
\}

\section*{Scope of computeSquares}
\begin{tabular}{|l|l|}
\hline number & 4 \\
\hline
\end{tabular}


public static void computeSquares() \{ for (int number = 1; number <= 6; number++) \{ System.out.println(number + " squared = " + (number * number)); \}
\}

\section*{Scope of computeSquares}
\begin{tabular}{|l|l|}
\hline number & 4 \\
\hline
\end{tabular}

public static void computeSquares() \{ for (int number \(=1\); number <= 6; number++) \{ System.out.println(number + " squared = " + (number * number)); \}
\}

\section*{Scope of computeSquares}
\begin{tabular}{|l|l|}
\hline number & 5 \\
\hline
\end{tabular}


public static void computeSquares() \{ for (int number = 1; number <= 6; number++) \{ System.out.println(number + " squared = " + (number * number)); \}

\section*{Scope of computeSquares}
\begin{tabular}{|l|l|}
\hline number & 5 \\
\hline
\end{tabular}

public static void computeSquares() \{ for (int number = 1; number <= 6; number++) \{ System.out.println(number + " squared = " + (number * number)); \}
\}

\section*{Scope of computeSquares}
\begin{tabular}{|l|l|}
\hline number & 6 \\
\hline
\end{tabular}

public static void computeSquares() \{ for (int number \(=1\); number <= 6; number++) \{ System.out.println(number + " squared = " + (number * number)); \}

\section*{Scope of computeSquares}
\begin{tabular}{|l|l|}
\hline number & 6 \\
\hline
\end{tabular}

public static void computeSquares() \{ for (int number = 1; number <= 6; number++) \{ System.out.println(number + " squared = " + (number * number)); \}
\}

\section*{Scope of computeSquares}
\begin{tabular}{|l|l|}
\hline number & 6 \\
\hline
\end{tabular}

public static void computeSquares() \{ for (int number = 1; number <= 6; number++) \{ System.out.println(number + " squared = " + (number * number)); \}

\section*{Scope of computeSquares}
\begin{tabular}{|l|l|}
\hline number & 7 \\
\hline
\end{tabular}

public static void computeSquares() \{ for (int number = 1; number <= 6; number++) \{ System.out.println(number + " squared = " + (number * number)); \}
\}

\section*{Scope of computeSquares}

\section*{Output:}

1 squared \(=1\)
2 squared \(=4\)
3 squared \(=9\)
4 squared \(=16\)
5 squared \(=25\)
6 squared \(=36\)
```

