Flgures.java

Program Breakdown
(Static Methods)

Problem Statement

Write a program called Figures.java
that prints the output on the right to
the console.

Structure the code so there are no
non-blank System.out.println() calls in
main.

Reduce whole line redundancy as
much as possible!

Problem Statement

Write a program called Figures.java
that prints the output on the right to
the console.

Structure the code so there are no
non-blank System.out.println() calls in
main.

Reduce whole line redundancy as
much as possible!

What we need

Way to write a program that prints output

@ class with main method and
System.out.printin() calls

Way to represent output text in Java

[String literals for each line of output
we want to produce

Way to move code out of main but still
have it executed

a7

Way to reduce redundancy

Q777

Development Strategy

1. Unstructured: Print all output in main

2. Structured: Use static methods to produce the output without non-blank
System.out.println statements in main

3. Reduce redundancy: Use static methods to reduce redundancy in the
code

NOTE: You should not use escape
sequences on Take-Home

:jcape Sequen[es Assessment 1 (nor will they be

needed)

Motivation:;

e Some characters we are unable to represent within the String on their
own (e.g. quotation mark character " is being used to indicate the start

and end of a String of characters)
e Use a special sequence of characters (escape sequence) to represent

these outliers in the String instead

Examples:

e Quotation mark is represented by \"
e Backslash is represented by \\

o Why do we need an escape sequence for backslash?

Anywhere in we want to put a
backslash character (\) in a String, we
have to use the escape sequence
instead (\\)

System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.

out

out

out

out

out

out

out

out

out

out

out

out

out

.println(" /\\");
out.
.println("/ \\");
.println("\\ /");
out.
out.

println(" / \\");

println(" \\ /");
println(" \\/");

.println();
out.
out.
.println("/ \\")s
out.
.printIn(" \\ /");
.println(" \\/");
out.
out.
.printIn(" \\ /");
out.
out.
.println(" / \\");
out.
out.
.println("------ ");
out.
out.
.println(" \\/");
out.
out.
.println("/ \\") s
out.
out.
.println(" \\/");

println(" /\\");
println(" / \\");

println("\\ /")
println();
println("\\ /")

println(" \\/");
println(" /\\");

println("/ \\");
println();

println("\\ /")
println(" \\ /");

println(" /\\");
println(" / \\");

println("\\ /")
println(" \\ /");

Development Strategy

2. Structured: Use static methods to produce the output without non-blank
System.out.println statements in main

3. Reduce redundancy: Use static methods to reduce redundancy in the
code

Static Methods

public static void||methodName()||{

**Keywords:

These words (public static void) indicate
(declare) to Java that you are writing a method
that contains statements of executable code

A method is a subroutine, a part of the overall
procedure of the program that has been
labeled

Main is a special method that begins executing
when you run the program

Specifying your method:
e You can name a method anything you
want as long as:

o It contains only letters,
numbers, underscores, and
dollar sign symbols

o Must begin with a letter

e By convention, we use camelCasing
o First word is lowercase
o Every next word is capitalized
e Should be descriptive of the method's
task

Scope:

e Everything between the curly braces is
part of (within the scope of) the main
method

e Thisis where any number of
executable statements of code go

e Java will execute the statements in the
method in order from top to bottom

public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello from main");
printGreeting();
System.out.println("Hello again from main");
printGreeting();

}

public static void printGreeting() {
System.out.println("Hello from printGreeting");

}

Output:

Control flow

- We hit run and Java goes to the main method
and starts executing statements from top to
bottom

public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello from main");
printGreeting();
System.out.println("Hello again from main");
printGreeting();
}

public static void printGreeting() {
System.out.println("Hello from printGreeting");
}
}

Output:
Hello from main

Control flow

- We hit run and Java goes to the main method
and starts executing statements from top to
bottom

- Java reaches the first println statement in
main and executes it

public class HelloWorld {

public static void main(String[] args) { [-[|
System.out.println("Hello from main"); ()[] r() ()\A/

printGreeting();
System.out.printIn(*Hello again from main®); - We hit run and Java goes to the main method
printGreeting();)
} and starts executing statements from top to
bottom
public static void printGreeting() { - Java reaches the first println statement in
System.out.println("Hello from printGreeting"”); main and executes it
} - Java reaches the first call to printGreeting, so it
} jumps down to the printGreeting method and
Output: starts executing statements from top to bottom

Hello from main

public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello from main");
printGreeting();
System.out.println("Hello again from main");
printGreeting();

}

public static void printGreeting() {
System.out.println("Hello from printGreeting");
}
}

Output:
Hello from main
Hello from printGreeting

Control flow

- We hit run and Java goes to the main method
and starts executing statements from top to
bottom

- Java reaches the first println statement in
main and executes it

- Java reaches the first call to printGreeting, so it
jumps down to the printGreeting method and
starts executing statements from top to bottom
- Java reaches the first println statement in
printGreeting and executes it

public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello from main");
printGreeting();
System.out.println("Hello again from main");
printGreeting();

}

public static void printGreeting() {
System.out.println("Hello from printGreeting");
}
}

Output:

Hello from main

Hello from printGreeting
Hello again from main

Control flow

- We hit run and Java goes to the main method
and starts executing statements from top to
bottom

- Java reaches the first println statement in
main and executes it

- Java reaches the first call to printGreeting, so it
jumps down to the printGreeting method and
starts executing statements from top to bottom
- Java reaches the first println statement in
printGreeting and executes it

- Java goes back up to main and continues
executing statements, so this next println is
executed

public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello from main");
printGreeting();
System.out.println("Hello again from main");
printGreeting();

}

public static void printGreeting() {
System.out.println("Hello from printGreeting");

}
}

Output:

Hello from main

Hello from printGreeting
Hello again from main

Control flow

- We hit run and Java goes to the main method
and starts executing statements from top to
bottom

- Java reaches the first println statement in
main and executes it

- Java reaches a call to printGreeting, so it
jumps down to the printGreeting method and
starts executing statements from top to bottom
- Java reaches the first println statement in
printGreeting and executes it

- Java goes back up to main and continues
executing statements, so this next println is
executed

- Java reaches a call to printGreeting, so it
jumps down to the printGreeting method and
starts executing statements from top to bottom

public class HelloWorld {

public static void main(String[] args) { [-[|
System.out.println("Hello from main"); Dn rO OW
printGreeting();

aiﬁigpzzilﬁgt;tln(Hello again from main®); - We hit run and Java goes to the main method
} ’ and starts executing statements from top to
bottom
public static void printGreeting() { - Java reaches the first println statement in
System.out.println("Hello from printGreeting"); main and executes it
} - Java reaches a call to printGreeting, so it
} jumps down to the printGreeting method and
Output: starts executing statements from top to bottom
Hello from main - Java reaches the println statement in
Hello from printGreeting printGreeting and executes it
Hello again from main - Java goes back up to main and continues
Hello from printGreeting executing statements, so this next printin is
executed
Takeaway: - Java reaches a call to printGreeting, so it
Static methods allow segments of code (subtasks) jumps down to the printGreeting method and
to be moved out of the main method'’s statements starts executing statements from top to bottom
but still get executed!!! - Java reaches the println statement in

printGreeting and executes it

Problem Statement

Write a program called Figures.java
that prints the output on the right to
the console.

Structure the code so there are no
non-blank System.out.println() calls in
main.

Reduce whole line redundancy as
much as possible!

What we need

Way to write a program that prints output

@ class with main method and
System.out.printin() calls

Way to represent output text in Java

[String literals for each line of output
we want to produce

Way to move code out of main but still
have it executed

d Static methods
Way to reduce redundancy

@ Static methods

/\ System.out.println(" /\\");

/ 0\ System.out.println(" / \\");
/ \ System.out.println("/ \\");
\ / System.out.println("\\ /");

\ / System.out.println(" \\ /");

\/ System.out.println(" \\/");
System.out.println();
/\ System.out.println(" /\\");

/ 0\ System.out.println(" / \\");
/ \ System.out.println("/ \\");
\ / System.out.println("\\ /");

\ / System.out.println(" \\ /");

\/ System.out.println(" \\/");
System.out.println();

\ / System.out.println("\\ /");
\ / System.out.println(" \\ /");
\/ System.out.println(" \\/");
/\ System.out.println(" /\\");

/ 0\ System.out.println(" / \\");
/ \ System.out.println("/ \\");

System.out.println();

------ System.out.println("------");
\ / System.out.println("\\ /");
\ / System.out.println(" \\ /");
\/ System.out.println(" \\/");
/\ System.out.println(" /\\");

/ 0\ System.out.println(" / \\");
/ \ System.out.println("/ \\");
\ / System.out.println("\\ /");
\ / System.out.println(" \\ /");
\/ System.out.println(" \\/");

Structure

Motivation:

We can identify subtasks in our program, even visually from
the output

Diamond figure

Diamond figure

X figure

Tie

Since main is the method that Java is going to start executing
and return to executing, it is in control of the whole program
e Main should be a concise summary of the program
e Like a table of contents showing the subtasks of what
the program will do without showing how the code for
the subtasks is written

public static void printDiamond() {
.println(
out.
out.

System.
System.
System.
System.
System.
System.

}

out

out

println(
println(

.println(
out.
out.

println(
println(

"N\
"/ \\");
"/ \\");
"\\ /");
"\ /")
EERANVAD K

public static void printX() {

System.
System.
System.
System.
System.
System.

}

out

out

.println(
out.
out.

println(

println("
.println("
out.
out.

println(

println("

"\\ /");
"\ /")
\\/");
/\\");
"/ \\");
'/ \\");

/\ System.out.println(" /\\");

/ System.out.println(" / \\");
/ \ System.out.println("/ \\");
\ / System.out.println("\\ /");

\ System.out.println(" \\ /");

\/ System.out.println(" \\/");
System.out.println();
/\ System.out.println(" /\\");

/ System.out.println(" / \\");
/ \ System.out.println("/ \\");
\ / System.out.println("\\ /");

\ System.out.println(" \\ /");

\/ System.out.println(" \\/");
System.out.println();

\ / System.out.println("\\ /");
\ System.out.println(" \\ /");
\/ System.out.println(" \\/");
/\ System.out.println(" /\\");

/ System.out.println(" / \\");
/ \ System.out.println("/ \\");

System.out.println();

------ System.out.println("------");
\ / System.out.println("\\ /");
\ System.out.println(" \\ /");
\/ System.out.println(" \\/");
/\ System.out.println(" /\\");

/ System.out.println(" / \\");
/ \ System.out.println("/ \\");
\ / System.out.println("\\ /");
\ System.out.println(" \\ /");
\/ System.out.println(" \\/");

public static void printTie() {

System.
System.
System.
System.
System.
System.
System.
System.
System.
System.

out

out

out.
out.

out

out

.println(
out.
out.

println(
println(

.println("
println("

println(

.println(’
out.
out.

println(
println(

.println("

RO
"\\ /")
A\ /")
\\/");

/\\");

"/ \\");
"/ \\");
"\\ /")
A\ /")
\\/");

public static void main(String[] args) {

}

printDiamond();
System.out.println();
printDiamond();
System.out.println();
printX();
System.out.println();

printTie();

Structural components:

Our main method is a

concise summary of what
we visually see in the
program and there are no

non-blank printins!

We only need one
definition of the
printDiamond method and
we can call it twice to
achieve the same output
twice without rewriting the
code!

Development Strategy

3. Reduce redundancy: Use static methods to reduce redundancy in the
code

public static void printDiamond() {
System.out.printIn(™ /\\");
System.out.println(" / \\");
System.out.println("/ \\");
System.out.printIn(™\\ VADK
System.out.println(" \\ /");
System.out.println(" \\/");

}

public static void printX() {
System.out.printIn(™\\ VADK
System.out.println(" \\ /");
System.out.println(" \\/");
System.out.printIn(™ /\\");
System.out.println(" / \\");
System.out.println("/ \\");

public static void printMountain() {
System.out.println(" /\\");
System.out.println(" / \\");
System.out.println("/ \\");

}

public static void printValley() {
System.out.println("\\ /")
System.out.println(" \\ /");
System.out.println(" \\/");

public static void printDiamond() {

printMountain(); |
printValley(); |

}

public static void printX() {
printValley(); |
printMountain(); |

RE d un d dll [y Definition for now: ¢ or more consecutive lines of code that appear in ¢ or more places.

Motivation:

e We can identify repeated subtasks within our code and create new methods for the code:

o The red boxes
o The blue boxes

e Using methods to wrap repeated code under one subtask reduces redundancy!

public static void printTie() {
System.out.println("------ ")
System.out.printIn(™\\ /")
System.out.println(" \\ /");
System.out.println(™ \\/");
System.out.println(" /\\");
System.out.println(" / \\");
System.out.println("/ \\");

public static void printMountain() {
System.out.println(" /\\");
System.out.println(" / \\");
System.out.println("/ \\");

}

System.out.printIn(™\\ /")
System.out.println(" \\ /");
System.out.println(™ \\/");

public static void printValley() {
System.out.println("\\ /")
System.out.println(" \\ /");
System.out.println(" \\/");

public static void printDiamond() {

printMountain(); |
printValley(); |

}

public static void printX() {
printValley(); |
printMountain(); |

printX();

public static void printTie() {
System.out.println("------ ");

lprintvalley(); |

}

RE d un d dll [y Definition for now: ¢ or more consecutive lines of code that appear in ¢ or more places.

Motivation:

e We can identify repeated subtasks for which we already have methods:

o The blue box (printValley)
o The green box (printX)

e We don't need to rewrite ANY code that already has a method that executes the code

public static void main(String[] args) {

}

printDiamond();
System.out.println();
printDiamond();
System.out.println();
printX();
System.out.println();

printTie();

Main method:
e Directs what happens in

the program without
doing the actual work of
printing text out

e Is aconcise summary of

our program

e (Contains no non-blank

println statements

public static void printDiamond() {

printMountain(); |
printvalley();

)3

public static void printX() {
printvalley();
printMountain(); |

}

public static void printValley() {
System.out.println("\\ /");
System.out.println(" \\ /");
System.out.println(" \\/");

}

public static void printTie() {
System.out.println("******").
printX();
| printvalley();

}

public static void printMountain() f{
System.out.println(" /\\");
System.out.println(" / \\");
System.out.println("/ \\");

Methods for structure:

e These methods show the
primary components of
the program (the different
figures)

e They are used to structure
main

e printDiamond reduces
redundancy in main

e printXreduces
redundancy in printTie

Methods for redundancy:

e These methods reduce
redundancy by identifying
subtasks within the
structure methods

e They are not called from
main but the code is
executed because they are
called from other methods
(printDiamond, printX,
printTie) which are called
from main

Trivial Methods

There are cases where writing a method to wrap a statement of code does not
actually help structure or reducing redundancy. This is usually (but not always) the

case when you have a method that could be replaced with a single statement of
code.

public static void printTie() { public static void printTie() { All we've done is rep|aced
System.out.println("------ "); printLine(); f
printX(); printX(); one statement of code
printValley(); printvalley(); System.out.println("------ ");
} } with one method call
Lo public static void printLine() { printLine();
This line does not need System.out.println("------ ¥
a method to wrap it!! }
One printin does not

meet our definition of This is a trivial method!!
2 or more consecutive

lines of code in 2 or It dqesn't add to structure
more places and it doesn’t reduce
redundancy

public static void printDiamond() {

System.
System.
System.

out.
out.

-println("/ \\")s

out

printIn(™ /\\");
println(" / \\");

System.
System.
System.

out.
out.

out

.println("

printIn(™\\ /™);
println(™ \\ /");
\\/");

}

public static void printX() {

System.
System.
System.

out.
out.

out

.println("

printIn(™\\ /™);
println(™ \\ /");
\\/");

System.
System.
System.

out.
out.

-println("/ \\")s

out

printIn(™ /\\");
println(" / \\");

Trivial methods cannat reduce redundarn

public static void printDiamond() {
mountainlLinel();
mountainLine2();
mountainLine3();
valleylLinel();
valleylLine2();
valleyLine3();

}

public static void printX() {
mountainlLinel();
mountainLine2();
mountainLine3();
valleyLinel();
valleylLine2();
valleylLine3();

public static void mountainLinel() {
System.out.println(" /\\");

¥

public static void mountainLine2() {
System.out.println(" / \\");

¥

public static void mountainLine3() {
System.out.println("/ \\");

¥

public static void valleylLinel() {
System.out.println("\\ /")

¥

public static void valleylLine2() {
System.out.println(" \\ /");

¥

public static void valleylLine3() {
System.out.println(" \\/");

}

Cy!

Notice that even though none of the System.out.println statements are repeated, the code STILL has
redundancy (2 or more consecutive lines of code in two or more places)....it's just static method calls
instead of System.out.println statements.
The mountain and valley line methods are all trivial, since they do not reduce redundancy or add to
structure.

