
Building Java Programs
Chapter 19

Functional Programming with Java 8

Copyright (c) Pearson 2016.
All rights reserved.

2

What is FP?
• functional programming: A style of programming that

emphasizes the use of functions (methods) to decompose a
complex task into subtasks.
– Examples of functional languages:

LISP, Scheme, ML, Haskell, Erlang, F#, Clojure, ...

• Java is considered an object-oriented language, not a
functional language.

• But Java 8 adds several language features to facilitate a partial
functional programming style.

3

Java 8 FP features
• 1. Effect-free programming

• 2. Processing structured data via functions

• 3. First-class functions

• 4. Function closures

• 5. Higher-order operations on collections

4

Effect-free code (19.1)
• side effect: A change to the state of an object or program

variable produced by a call on a function (i.e., a method).
– example: modifying the value of a variable
– example: printing output to System.out
– example: reading/writing data to a file, collection, or network

int result = f(x) + f(x);

int result = 2 * f(x);

• Are the two above statements the same?
– Yes, if the function f() has no side effects.
– One goal of functional programming is to minimize side effects.

5

Code w/ side effects
public class SideEffect {

public static int x;

public static int f(int n) {
x = x * 2;
return x + n;

}

// what if it were 2 * f(x)?
public static void main(String[] args) {

x = 5;
int result = f(x) + f(x);
System.out.println(result);

}
}

6

First-class functions (19.2)
• first-class citizen: An element of a programming language

that is tightly integrated with the language and supports the
full range of operations generally available to other entities in
the language.

• In functional programming, functions (methods) are treated as
first-class citizens of the languages.
– can store a function in a variable
– can pass a function as a parameter to another function
– can return a value from a function
– can create a collection of functions
– ...

7

Lambda expressions
• lambda expression ("lambda"): Expression that describes a

function by specifying its parameters and return value.
– Java 8 adds support for lambda expressions.

• Syntax:
(parameters) -> expression

• Example:
(x) -> x * x // squares a number

– The above is roughly equivalent to:
public static int squared(int x) {

return x * x;

}

8

Add/multiply tutor
• Consider a program that gives addition and multiplication quiz

problems to the user:

9 + 6 = 15
you got it right
3 * 7 = 18
incorrect...the answer was 21

• How do we generalize the idea of "add or multiply"?
– How much work would it be to add other operators?
– Would functional programming help?

9

Code w/ lambdas
• We can represent the math operation as a lambda:

Scanner console = new Scanner(System.in);

// quiz the user on 3 addition problems
giveProblems(console, 3, "+", (x, y) -> x + y);

// quiz the user on 3 multiplication problems
giveProblems(console, 3, "*", (x, y) -> x * y);

10

giveProblems method
public static void giveProblems(Scanner console, int count,

String text, IntBinaryOperator operator) {
Random r = new Random();
int numRight = 0;
for (int i = 1; i <= count; i++) {

int x = r.nextInt(12) + 1;
int y = r.nextInt(12) + 1;
System.out.print(x + " " + text + " " + y + " = ");
int answer = operator.applyAsInt(x, y);
int response = console.nextInt();
if (response == answer) {

System.out.println("you got it right");
numRight++;

} else {
System.out.println("incorrect...the answer was "

+ answer);
}

}
System.out.println(numRight + " of " + count + " correct");
System.out.println();

}

11

Streams (19.3)
• stream: A sequence of elements from a data source that

supports aggregate operations.

• Streams operate on a data source and modify it:

– example: print each element of a collection
– example: sum each integer in a file
– example: concatenate strings together into one large string
– example: find the largest value in a collection
– ...

12

Code w/o streams
• Non-functional programming sum code:

// compute the sum of the squares of integers 1-5
int sum = 0;
for (int i = 1; i <= 5; i++) {

sum = sum + i * i;
}

13

The map modifier
• The map modifier applies a lambda to each stream element:

– higher-order function: Takes a function as an argument.

// compute the sum of the squares of integers 1-5
int sum = IntStream.range(1, 6)

.map(n -> n * n)

.sum();

// the stream operations are as follows:

IntStream.range(1, 6) -> [1, 2, 3, 4, 5]
-> map -> [1, 4, 9, 16, 25]
-> sum -> 55

14

The filter modifier
• The filter stream modifier removes/keeps elements of the

stream using a boolean lambda:

// compute the sum of squares of odd integers
int sum =

IntStream.of(3, 1, 4, 1, 5, 9, 2, 6, 5, 3)
.filter(n -> n % 2 != 0)
.map(n -> n * n)
.sum();

// the stream operations are as follows:
IntStream.of -> [3, 1, 4, 1, 5, 9, 2, 6, 5, 3]

-> filter -> [3, 1, 1, 5, 9, 5, 3]
-> map -> [9, 1, 1, 25, 81, 25, 9]
-> sum -> 151

15

Streams and methods
• using streams as part of a regular method:

// Returns true if the given integer is prime.
// Assumes n >= 0.
public static boolean isPrime(int n) {

return IntStream.range(1, n + 1)
.filter(x -> n % x == 0)
.count() == 2;

}

16

The reduce modifier
• The reduce modifier combines elements of a stream using a

lambda combination function.
– Accepts two parameters: an initial value and a lambda to combine

that initial value with each next value in the stream.

// Returns n!, or 1*2*3*...*(n-1)*n.
// Assumes n is non-negative.
public static int factorial(int n) {

return IntStream.range(2, n + 1)
.reduce(1, (a, b) -> a * b);

}

17

Stream operators
Method name Description
anyMatch(f) returns true if any elements of stream match given predicate
allMatch(f) returns true if all elements of stream match given predicate

average() returns arithmetic mean of numbers in stream

collect(f) convert stream into a collection and return it
count() returns number of elements in stream

distinct() returns unique elements from stream
filter(f) returns the elements that match the given predicate
forEach(f) performs an action on each element of stream
limit(size) returns only the next size elements of stream
map(f) applies the given function to every element of stream
noneMatch(f) returns true if zero elements of stream match given predicate

18

Stream operators
Method name Description
parallel() returns a multithreaded version of this stream
peek(f) examines the first element of stream only
reduce(f) applies the given binary reduction function to stream elements
sequential() single-threaded, opposite of parallel()
skip(n) omits the next n elements from the stream
sorted() returns stream's elements in sorted order
sum() returns sum of elements in stream
toArray() converts stream into array

Static method Description
concat(s1, s2) glues two streams together
empty() returns a zero-element stream
iterate(seed, f) returns an infinite stream with given start element
of(values) converts the given values into a stream
range(start, end) returns a range of integer values as a stream

19

Optional results
• Some stream terminators like max return an "optional" result

because the stream might be empty or not contain the result:

// print largest multiple of 10 in list
// (does not compile!)
int largest =

IntStream.of(55, 20, 19, 31, 40, -2, 62, 30)
.filter(n -> n % 10 == 0)
.max();

System.out.println(largest);

20

Optional results fix
• To extract the optional result, use a "get as" terminator.

– Converts type OptionalInt to Integer

// print largest multiple of 10 in list
// (this version compiles and works.)
int largest =

IntStream.of(55, 20, 19, 31, 40, -2, 62, 30)
.filter(n -> n % 10 == 0)
.max()
.getAsInt();

System.out.println(largest);

21

Stream exercises
• Write a method sumAbsVals that uses stream operations to

compute the sum of the absolute values of an array of
integers. For example, the sum of {-1, 2, -4, 6, -9} is
22.

• Write a method largestEven that uses stream operations to
find and return the largest even number from an array of
integers. For example, if the array is {5, -1, 12, 10, 2,
8}, your method should return 12. You may assume that the
array contains at least one even integer.

22

Closures (19.4)
• bound/free variable: In a lambda expression, parameters

are bound variables while variables in the outer containing
scope are free variables.

• function closure: A block of code defining a function along
with the definitions of any free variables that are defined in the
containing scope.

// free variables: min, max, multiplier
// bound variables: x, y

int min = 10;
int max = 50;
int multiplier = 3;
compute((x, y) -> Math.max(x, min) *

Math.max(y, max) * multiplier);

23

Streams and arrays
• An array can be converted into a stream with Arrays.stream:

// compute sum of absolute values of even ints
int[] numbers = {3, -4, 8, 4, -2, 17,

9, -10, 14, 6, -12};
int sum = Arrays.stream(numbers)

.map(n -> Math.abs(n))

.filter(n -> n % 2 == 0)

.distinct()

.sum();

24

Method references
ClassName::methodName

• A method reference lets you pass a method where a lambda
would otherwise be expected:

// compute sum of absolute values of even ints
int[] numbers = {3, -4, 8, 4, -2, 17,

9, -10, 14, 6, -12};
int sum = Arrays.stream(numbers)

.map(Math::abs)

.filter(n -> n % 2 == 0)

.distinct()

.sum();

25

Streams and lists
• A collection can be converted into a stream by calling its
stream method:

// compute sum of absolute values of even ints
ArrayList<Integer> list =

new ArrayList<Integer>();
list.add(-42);
list.add(-17);
list.add(68);
list.stream()

.map(Math::abs)

.forEach(System.out::println);

26

Streams and strings

// convert into set of lowercase words
List<String> words = Arrays.asList(

"To", "be", "or", "Not", "to", "be");
Set<String> words2 = words.stream()

.map(String::toLowerCase)

.collect(Collectors.toSet());

System.out.println("word set = " + words2);

output:
word set = [not, be, or, to]

27

Streams and files

// find longest line in the file
int longest = Files.lines(Paths.get("haiku.txt"))

.mapToInt(String::length)

.max()

.getAsInt();

stream operations:
Files.lines -> ["haiku are funny",

"but sometimes they don't make sense",
"refrigerator"]

-> mapToInt -> [15, 35, 12]

-> max -> 35

28

Stream exercises
• Write a method pigLatin that uses stream operations to

convert a String parameter into its "Pig Latin" form. For
example, if the string passed is "go seattle mariners", return
"o-gay eattle-say ariners-may".

• Write a method fourLetterWords that accepts a file name as
a parameter and returns a count of the number of unique lines
in the file that are exactly four letters long. Assume that each
line in the file contains at least one word.

