
debugging 101
material adapted from CSE 142 20au

— CSE 2 124 Lab

“Bugs: If you don’t put them in,
you don’t have to take them out.”

The process of finding and
removing bugs from your
code to make it run
successfully.

what is
debugging?

debugging
strategies 0301

02 common bugs

finding bugs

04 debugging a full
program

how to find bugs in your
programs

bugs that often appear in
programs

game plan

practice finding bugs in
small pieces of code

practice debugging a full
program

including non-strategies and
effective strategies

material adapted from CSE
142 sp20, and CSE 332 18au

01
debugging strategies

jGrasp debugger
- Use jGrasp’s built in debugging tool
- Lets you trace through your program’s

execution step by step
- A little work to learn but very useful

println debugging
- print out the intermediate states of the

program
- fast, easy, effective

debugging tools
In other words, these are strategies that you should do when debugging
unexpected output.

Rubber Duck Debugging
- Grab a rubber duck (or another

inanimate object, or friend) and explain
your code to them

- Explain what your program does,
line-by-line, and compare that to what
it’s supposed to do

- Sounds simple, but it works wonders

debugging strategies

Take a Break
- Sometimes the solution will come to you

when you’re taking a walk, with friends, or
watching a movie

- Taking a break gives your brain time to
process information without stress

Ask for Help
- Come to Support Hours, explain the

problem you’re facing, what you’ve tried so
far, and where you think the problem may be

In other words, these are strategies that you should do when debugging
unexpected output.

Shotgun Debugging
- Problem isn’t clear, so let’s just try every

possible thing we can think of, like
changing bounds in a loop

- Pls don’t do this

debugging non-strategies

Stare and Hope
- Stare at your code and hope you’ll be able to

see the bug
- An expectation that your brain is to run the

program in your head, so why not use the
computer to your advantage

In other words, these are strategies that you should absolutely avoid when
debugging. They lead to extra frustration, often don’t help you find the bug, and
won’t work as the programs get larger and more complicated.

https://courses.cs.washington.edu/courses
/cse142/21sp/files/debugging.pdf

02
common compiler

& runtime bugs

https://courses.cs.washington.edu/courses/cse142/21sp/files/exploration-sessions/debugging.pdf
https://courses.cs.washington.edu/courses/cse142/21sp/files/exploration-sessions/debugging.pdf

practice addressing some
common bugs

03
finding bugs

guided bug #1

After compiling, I receive this bug- what’s going on?

guided bug #1

After compiling, I receive this bug- what’s going on?

Double check that your program
has the right # of opening { AND
closing } curly braces!

In this program:
● { = 3
● } = 4

closing != # opening

Too many closing braces :(

guided bug #1
solution

public class Avatar {
 public static void main(String[] args) {
 int x = 0;
 if (x == 1) {
 System.out.println("Toph is awesome");
 } else {
 System.out.println("Toph is cool");
 }
 }
}

public class Avatar {
 public static void main(String[] args) {
 int x = 0;
 if (x == 1) {
 System.out.println("Toph is awesome");
 } else
 System.out.println("Toph is cool");
 }
 }
}

Add an opening brace

guided bug #2

After compiling, I receive this bug- what’s going on?

guided bug #2

After compiling, I receive this bug- what’s going on?

Similar issue as before - double
check that your program has the
right # of opening { AND closing }
curly braces!

In this program:
● { = 4
● } = 3

closing != # opening

Too many closing braces :(

guided bug #2
solution

public class Avatar {
 public static void main(String[] args) {
 int x = 0;
 if (x == 1) {
 System.out.println("Toph is awesome");
 } else if (x == 0) {
 System.out.println("Toph is cool");
 }
 }
}

public class Avatar {
 public static void main(String[] args) {
 int x = 0;
 if (x == 1) {
 System.out.println("Toph is awesome");
 else if (x == 0) {
 System.out.println("Toph is cool");
 }
 }
}

Add a closing brace

guided bug #3

After compiling, I receive this bug- what’s
going on?

I’ve declared appa in my main method,
so, this should work, right?

Why can’t aang() find appa? (hehe)

guided bug #3

If a method can’t find a symbol, that
means that variable isn’t in the scope of
that method.

So, how do we get aang() to know about
appa, the variable that only exists in the
main method?

guided bug #3
solution

public class Avatar {
 public static void main(String[] args) {
 String x = "fluffy flying bison";
 aang(x);
 }

public static void aang(String appa) {
 System.out.println(appa);
 }
}

public class Avatar {
 public static void main(String[] args) {
 String x = "fluffy flying bison";
 }

public static void aang() {
 System.out.println(appa);
 }
}

Add ‘appa’ as a
parameter

guided bug #4

After compiling, I receive this bug- what’s going on?

guided bug #4

After compiling, I receive this bug- what’s going on?

The data that a method returns MUST
match the return type of the method

Type of data being returned = int
Return type of aang() = String

Problem: an int cannot be converted
into a String

guided bug #4
solution

public class Avatar {
 public static void main(String[] args) {
 String s = aang();
 }

 public static String aang() {
 return "2";
 }

}

public class Avatar {
 public static void main(String[] args) {
 int s = aang();
 }

 public static int aang() {
 return 2;
 }

}

Change to a string

Two ways to solve this:
1. Change the 2 into “2”

(therefore making it a
string)

2. Or, change the return
type altogether of the
aang() method to int
instead of string. The
type of data being
caught will also need to
change to int (see main
method)

Let’s take a look at the
BuggyRoulette.java program

04
debugging a
full program

