
Copyright 2010 by Pearson Education

TH Assessment 8:
Critters

reading: A8 spec

Copyright 2010 by Pearson Education
2

Copyright 2010 by Pearson Education
3

CSE 142 Critters
 Ant

 Bird

 Hippo

 Vulture

 Husky (creative)

 behavior:

 eat eating food

 fight animal fighting

 getColor color to display

 getMove movement

 toString letter to display

Copyright 2010 by Pearson Education
4

How the simulator works
 "Go" → loop:

 move each animal (getMove)

 if they collide, fight

 if they find food, eat

 Simulator is in control!

 getMove is one move at a time

 (no loops)

 Keep state (fields)

 to remember future moves

%

Next
move?

Copyright 2010 by Pearson Education
5

A Critter subclass
public class name extends Critter { ... }

public abstract class Critter {

public boolean eat()

public Attack fight(String opponent)

// ROAR, POUNCE, SCRATCH

public Color getColor()

public Direction getMove()

// NORTH, SOUTH, EAST, WEST, CENTER

public String toString()

}

Copyright 2010 by Pearson Education
6

Sidebar: Color

 Specified as predefined Color class constants:

Color.CONSTANT_NAME

where CONSTANT_NAME is one of:

BLACK, BLUE, CYAN, DARK_GRAY, GRAY,

GREEN, LIGHT_GRAY, MAGENTA, ORANGE,

PINK, RED, WHITE, YELLOW

 Example:

Color.MAGENTA

Copyright 2010 by Pearson Education
7

Making your own colors
 Create colors using Red-Green-Blue (RGB) values of 0-

255

Color name = new Color(red, green, blue);

 Example:

Color brown = new Color(192, 128, 64);

 List of RGB colors: http://web.njit.edu/~kevin/rgb.txt.html

http://web.njit.edu/~kevin/rgb.txt.html

Copyright 2010 by Pearson Education
8

Development Strategy
 Do one species at a time

 in ABC order from easier to harder (Ant → Bird → ...)

 debug printlns

 Simulator helps you debug

 smaller width/height

 fewer animals

 "Tick" instead of "Go"

 "Debug" checkbox

 drag/drop to move animals

Copyright 2010 by Pearson Education
9

Critter exercise: Cougar

 Write a critter class Cougar:

Method Behavior

constructor public Cougar()

eat Always eats.

fight Always pounces.

getColor Blue if the Cougar has never fought; red if he

has.

getMove Walks west until he finds food; then walks east
until he finds food; then goes west and
repeats.

toString "C"

Copyright 2010 by Pearson Education
10

Ideas for state
 You must not only have the right state, but update that

state properly when relevant actions occur.

 Counting is helpful:

 How many total moves has this animal made?

 How many times has it eaten? Fought?

 Remembering recent actions in fields is helpful:

 Which direction did the animal move last?

 How many times has it moved that way?

 Did the animal eat the last time it was asked?

 How many steps has the animal taken since last eating?

 How many fights has the animal been in since last eating?

Copyright 2010 by Pearson Education
11

Cougar solution
import java.awt.*; // for Color

public class Cougar extends Critter {

private boolean west;

private boolean fought;

public Cougar() {

west = true;

fought = false;

}

public boolean eat() {

west = !west;

return true;

}

public Attack fight(String opponent) {

fought = true;

return Attack.POUNCE;

}

...

Copyright 2010 by Pearson Education
12

Cougar solution
...

public Color getColor() {

if (fought) {

return Color.RED;

} else {

return Color.BLUE;

}

}

public Direction getMove() {

if (west) {

return Direction.WEST;

} else {

return Direction.EAST;

}

}

public String toString() {

return "C";

}

}

Copyright 2010 by Pearson Education
13

Critter exercise: Snake
Method Behavior

constructo
r

public Snake()

eat Never eats

fight always forfeits

getColor black

getMove 1 E, 1 S; 2 W, 1 S; 3 E, 1 S; 4 W, 1 S; 5 E,
...

toString "S"

Copyright 2010 by Pearson Education
14

Determining necessary fields
 Information required to decide what move to make?

 Direction to go in

 Length of current cycle

 Number of moves made in current cycle

 Remembering things you've done in the past:

 an int counter?

 a boolean flag?

Copyright 2010 by Pearson Education
15

Snake solution
import java.awt.*; // for Color

public class Snake extends Critter {
private int length; // # steps in current horizontal cycle
private int step; // # of cycle's steps already taken

public Snake() {
length = 1;
step = 0;

}

public Direction getMove() {
step++;
if (step > length) { // cycle was just completed

length++;
step = 0;
return Direction.SOUTH;

} else if (length % 2 == 1) {
return Direction.EAST;

} else {
return Direction.WEST;

}
}

public String toString() {
return "S";

}
}

Copyright 2010 by Pearson Education
16

Copyright 2010 by Pearson Education
17

Static members
 static: Part of a class, rather than part of an object.

 Object classes can have static methods and fields.

 Not copied into each object; shared by all objects of that
class.

class

state:
private static int staticFieldA

private static String staticFieldB

behavior:
public static void someStaticMethodC()

public static void someStaticMethodD()

object #1

state:
int field2
double field2

behavior:
public void
method3()
public int method4()
public void
method5()

object #2

state:
int field1
double field2

behavior:
public void
method3()
public int method4()
public void
method5()

object #3

state:
int field1
double field2

behavior:
public void
method3()
public int method4()
public void
method5()

Copyright 2010 by Pearson Education
18

Static fields
private static type name;

or,

private static type name = value;

 Example:

private static int theAnswer = 42;

 static field: Stored in the class instead of each object.

 A "shared" global field that all objects can access and modify.

 Like a class constant, except that its value can be changed.

Copyright 2010 by Pearson Education
19

Accessing static fields
 From inside the class where the field was declared:

fieldName // get the value

fieldName = value; // set the value

 From another class (if the field is public):

ClassName.fieldName // get the value

ClassName.fieldName = value; // set the value

 generally static fields are not public unless they are final

 Exercise: Modify the BankAccount class shown previously

so that each account is automatically given a unique ID.

Copyright 2010 by Pearson Education
20

Static methods
// the same syntax you've already used for methods

public static type name(parameters) {
statements;

}

 static method: Stored in a class, not in an object.

 Shared by all objects of the class, not replicated.

 Does not have any implicit parameter, this;

therefore, cannot access any particular object's fields.

 Exercise: Make it so that clients can find out how many
total BankAccount objects have ever been created.

Copyright 2010 by Pearson Education
21

BankAccount solution
public class BankAccount {

// static count of how many accounts are created
// (only one count shared for the whole class)
private static int objectCount = 0;

// clients can call this to find out # accounts created
public static int getNumAccounts() {

return objectCount;
}

// fields (replicated for each object)
private String name;
private int id;

public BankAccount() {
objectCount++; // advance the id, and
id = objectCount; // give number to account

}

...

public int getID() { // return this account's id
return id;

}
}

Copyright 2010 by Pearson Education
22

Multi-class systems
 Most large software systems consist of many classes.

 One main class runs and calls methods of the others.

 Advantages:

 code reuse

 splits up the program logic into manageable chunks

Main Class #1

main

method1

method2

Class #2

method3

method5

Class #3

method4

method6

Copyright 2010 by Pearson Education
23

Summary of Java classes
 A class is used for any of the following in a large

program:

 a program : Has a main and perhaps other static methods.
 example: Bagels, Birthday, BabyNames, CritterMain

 does not usually declare any static fields (except final)

 an object class : Defines a new type of objects.
 example: Point, BankAccount, Date, Critter, Hipster

 declares object fields, constructor(s), and methods

 might declare static fields or methods, but these are less of a focus

 should be encapsulated (all fields and static fields private)

 a module : Utility code implemented as static methods.
 example: Math

