
1

Building Java Programs

Chapter 5
Lecture 5-1: while Loops,

Fencepost Loops, and Sentinel Loops

reading: 5.1 – 5.2

2

3

A deceptive problem...
 Write a method printLetters that prints each letter from

a word separated by commas.

For example, the call:

printLetters("Atmosphere")

should print:

A, t, m, o, s, p, h, e, r, e

4

Flawed solutions
 public static void printLetters(String word) {

for(int i = 0; i < word.length(); i++) {

System.out.print(word.charAt(i) + ", ");

}

System.out.println(); // end line

}

 Output: A, t, m, o, s, p, h, e, r, e,

 public static void printLetters(String word) {

for(int i = 0; i < word.length(); i++) {

System.out.print(", " + word.charAt(i));

}

System.out.println(); // end line

}

 Output: , A, t, m, o, s, p, h, e, r, e

5

Fence post analogy
 We print n letters but need only n - 1 commas.

 Similar to building a fence with wires separated by posts:

 If we use a flawed algorithm that repeatedly places a post +

wire, the last post will have an extra dangling wire.

for (length of fence) {

place a post.

place some wire.

}

6

Fencepost loop
 Add a statement outside the loop to place the initial "post."

 Also called a fencepost loop or a "loop-and-a-half" solution.

place a post.

for (length of fence - 1) {

place some wire.

place a post.

}

7

Fencepost method solution
 public static void printLetters(String word) {

System.out.print(word.charAt(0));

for(int i = 1; i < word.length(); i++) {

System.out.print(", " + word.charAt(i));

}

System.out.println(); // end line

}

 Alternate solution: Either first or last "post" can be taken out:

public static void printLetters(String word) {

for(int i = 0; i < word.length() - 1; i++) {

System.out.print(word.charAt(i) + ", ");

}

int last = word.length() – 1;

System.out.println(word.charAt(last)); // end line

}

8

Fencepost question
 Write a method printPrimes that prints all prime numbers

up to a max.

 Example: printPrimes(50) prints

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47

 If the maximum is less than 2, print no output.

 To help you, write a method countFactors which returns

the number of factors of a given integer.
 countFactors(20) returns 6 due to factors 1, 2, 4, 5, 10, 20.

9

Fencepost answer
// Prints all prime numbers up to the given max.

public static void printPrimes(int max) {

if (max >= 2) {

System.out.print("2");

for (int i = 3; i <= max; i++) {

if (countFactors(i) == 2) {

System.out.print(", " + i);

}

}

System.out.println();

}

}

// Returns how many factors the given number has.

public static int countFactors(int number) {

int count = 0;

for (int i = 1; i <= number; i++) {

if (number % i == 0) {

count++; // i is a factor of number

}

}

return count;

}

10

while loops

reading: 5.1

11

Categories of loops
 definite loop: Executes a known number of times.

 The for loops we have seen are definite loops.

 Print "hello" 10 times.

 Find all the prime numbers up to an integer n.

 Print each odd number between 5 and 127.

 indefinite loop: One where the number of times its body
repeats is not known in advance.

 Prompt the user until they type a non-negative number.

 Print random numbers until a prime number is printed.

 Repeat until the user has typed "q" to quit.

12

The while loop
 while loop: Repeatedly executes its

body as long as a logical test is true.

while (test) {

statement(s);

}

 Example:

int num = 1; // initialization

while (num <= 200) { // test

System.out.print(num + " ");

num = num * 2; // update

}

// output: 1 2 4 8 16 32 64 128

13

Example while loop
// finds the first factor of 91, other than 1

int n = 91;

int factor = 2;

while (n % factor != 0) {

factor++;

}

System.out.println("First factor is " + factor);

// output: First factor is 7

 while is better than for because we don't know how many

times we will need to increment to find the factor.

14

 sentinel: A value that signals the end of user input.

 sentinel loop: Repeats until a sentinel value is seen.

 Example: Write a program that prompts the user for text
until the user types nothing, then output the total number
of characters typed.

 (In this case, the empty string is the sentinel value.)

Type a line (or nothing to exit): hello
Type a line (or nothing to exit): this is a line
Type a line (or nothing to exit):
You typed a total of 19 characters.

Sentinel values

15

Solution?
Scanner console = new Scanner(System.in);

int sum = 0;

String response = "dummy"; // "dummy" value, anything but ""

while (!response.equals("")) {

System.out.print("Type a line (or nothing to exit): ");

response = console.nextLine();

sum += response.length();

}

System.out.println("You typed a total of " + sum + " characters.");

16

Changing the sentinel value
 Modify your program to use "quit" as the sentinel value.

 Example log of execution:

Type a line (or "quit" to exit): hello
Type a line (or "quit" to exit): this is a line
Type a line (or "quit" to exit): quit
You typed a total of 19 characters.

17

Changing the sentinel value
 Changing the sentinel's value to "quit" does not work!

Scanner console = new Scanner(System.in);

int sum = 0;

String response = "dummy"; // "dummy" value, anything but "quit"

while (!response.equals("quit")) {

System.out.print("Type a line (or \"quit\" to exit): ");

response = console.nextLine();

sum += response.length();

}

System.out.println("You typed a total of " + sum + " characters.");

 This solution produces the wrong output. Why?

You typed a total of 23 characters.

18

The problem with our code
 Our code uses a pattern like this:

sum = 0.

while (input is not the sentinel) {

prompt for input; read input.

add input length to the sum.

}

 On the last pass, the sentinel’s length (4) is added to the
sum:

prompt for input; read input ("quit").

add input length (4) to the sum.

 This is a fencepost problem.

 Must read N lines, but only sum the lengths of the first N-1.

19

A fencepost solution
sum = 0.

prompt for input; read input. // place a "post"

while (input is not the sentinel) {

add input length to the sum. // place a "wire"

prompt for input; read input. // place a "post"

}

 Sentinel loops often utilize a fencepost "loop-and-a-half"
style solution by pulling some code out of the loop.

20

Correct code
Scanner console = new Scanner(System.in);

int sum = 0;

// pull one prompt/read ("post") out of the loop

System.out.print("Type a line (or \"quit\" to exit): ");

String response = console.nextLine();

while (!response.equals("quit")) {

sum += response.length(); // moved to top of loop

System.out.print("Type a line (or \"quit\" to exit): ");

response = console.nextLine();

}

System.out.println("You typed a total of " + sum + " characters.");

21

Sentinel as a constant
public static final String SENTINEL = "quit";

...

Scanner console = new Scanner(System.in);

int sum = 0;

// pull one prompt/read ("post") out of the loop

System.out.print("Type a line (or \"" + SENTINEL + "\" to exit): ");

String response = console.nextLine();

while (!response.equals(SENTINEL)) {

sum += response.length(); // moved to top of loop

System.out.print("Type a line (or \"" + SENTINEL + "\" to exit): ");

response = console.nextLine();

}

System.out.println("You typed a total of " + sum + " characters.");

22

And with some cleanup…
public static final String SENTINEL = "quit";

public static void main(String[] args) {

Scanner console = new Scanner(System.in);

int sum = 0;

// pull one prompt/read ("post") out of the loop

String response = getLine(console);

while (!response.equals(SENTINEL)) {

sum += response.length(); // moved to top of loop

response = getLine(console);

}

System.out.println("You typed a total of " + sum + " characters.");

}

public static String getLine(Scanner console) {

System.out.print("Type a line (or \"" + SENTINEL + "\" to exit): ");

return console.nextLine();

}

