Building Java Programs

Chapter 4
Lecture 4-1: if and if/else Statements

reading: 4.2
self-check: #4-5, 7, 10, 11
exercises: #7
videos: Ch. 4 #2-4
START

THE 90's?

NO
STOP

YES
STOP

HAMMERTIME

COLLABORATE

LISTEN
The `if/else` statement

reading: 4.1, 4.6
Conditionals

- “If you eat your vegetables, then you can have dessert.”

- “If you do your homework, then you may go outside to play, or else you’ll be grounded for life.”
The if statement

Executes a block of statements only if a test is true

```
if (test) {
    statement;
    ...
    statement;
}
```

- Example:
  ```java
  double gpa = console.nextDouble();
  if (gpa >= 3.0) {
      System.out.println("Good job! Here’s a cookie.");
  }
  ```
The if/else statement

Executes one block if a test is true, another if false

```java
if (test) {
    statement(s);
} else {
    statement(s);
}
```

- Example:
  ```java
double gpa = console.nextDouble();
if (gpa >= 3.0) {
    System.out.println("Good job! Here’s a cookie.");
} else {
    System.out.println("No cookie for you!");
}
```
Relational expressions

- if statements and for loops both use logical tests.

  ```java
  for (int i = 1; i <= 10; i++) { ... } 
  if (i <= 10) { ... }
  ```

- These are Boolean expressions, seen in Ch. 5.

- Tests use relational operators:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Meaning</th>
<th>Example</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>==</code></td>
<td>equals</td>
<td>1 + 1 == 2</td>
<td>true</td>
</tr>
<tr>
<td><code>!=</code></td>
<td>does not equal</td>
<td>3.2 != 2.5</td>
<td>true</td>
</tr>
<tr>
<td><code><</code></td>
<td>less than</td>
<td>10 < 5</td>
<td>false</td>
</tr>
<tr>
<td><code>></code></td>
<td>greater than</td>
<td>10 > 5</td>
<td>true</td>
</tr>
<tr>
<td><code><=</code></td>
<td>less than or equal to</td>
<td>126 <= 100</td>
<td>false</td>
</tr>
<tr>
<td><code>>=</code></td>
<td>greater than or equal to</td>
<td>5.0 >= 5.0</td>
<td>true</td>
</tr>
</tbody>
</table>
Misuse of if

• What's wrong with the following code?

Scanner console = new Scanner(System.in);
System.out.print("What percentage did you earn? ");
int percent = console.nextInt();
if (percent >= 90) {
 System.out.println("You got an A!");
}
if (percent >= 80) {
 System.out.println("You got a B!");
}
if (percent >= 70) {
 System.out.println("You got a C!");
}
if (percent >= 60) {
 System.out.println("You got a D!");
}
if (percent < 60) {
 System.out.println("You got an F!");
}
...

...
Nested if/else

Chooses between outcomes using many tests

```java
if (test) {
    statement(s);
} else if (test) {
    statement(s);
} else {
    statement(s);
}
```

Example:
```java
if (x > 0) {
    System.out.println("Positive");
} else if (x < 0) {
    System.out.println("Negative");
} else {
    System.out.println("Zero");
}
```
Nested if/else/else if

- If it ends with `else`, exactly one path must be taken.
- If it ends with `if`, the code might not execute any path.

```java
if (test) {
    statement(s);
} else if (test) {
    statement(s);
} else if (test) {
    statement(s);
}
```

- Example:
```java
if (place == 1) {
    System.out.println("Gold medal!");
} else if (place == 2) {
    System.out.println("If you're not first, you're last!");
} else if (place == 3) {
    System.out.println("What comes after last place?");
}
```
Summary: *if* structures

- **exactly 1 path** (*mutually exclusive*)
  ```java
  if (test) {
      statement(s);
  } else if (test) {
      statement(s);
  } else {
      statement(s);
  }
  ```

- **0 or 1 path** (*mutually exclusive*)
  ```java
  if (test) {
      statement(s);
  } else if (test) {
      statement(s);
  } else if (test) {
      statement(s);
  }
  ```

- **0, 1, or many paths** (*independent tests; not exclusive*)
  ```java
  if (test) {
      statement(s);
  }
  if (test) {
      statement(s);
  }
  if (test) {
      statement(s);
  }
  ```
Which nested if/else?

- (1) if/if/if (2) nested if/else (3) nested if/else/if
 - Whether a user is lower, middle, or upper-class based on income.
 - (2) nested if / else if / else
 - Whether you made the dean's list (GPA ≥ 3.8) or honor roll (3.5-3.8).
 - (3) nested if / else if
 - Whether a number is divisible by 2, 3, and/or 5.
 - (1) sequential if / if / if
 - Computing a grade of A, B, C, D, or F based on a percentage.
 - (2) nested if / else if / else if / else if / else
Nested if/else question

Formula for body mass index (BMI):

\[BMI = \frac{weight}{height^2} \times 703 \]

<table>
<thead>
<tr>
<th>BMI</th>
<th>Weight class</th>
</tr>
</thead>
<tbody>
<tr>
<td>below 18.5</td>
<td>underweight</td>
</tr>
<tr>
<td>18.5 - 24.9</td>
<td>normal</td>
</tr>
<tr>
<td>25.0 - 29.9</td>
<td>overweight</td>
</tr>
<tr>
<td>30.0 and up</td>
<td>obese</td>
</tr>
</tbody>
</table>

- Write a program that produces output like the following:

This program reads data for two people and computes their body mass index (BMI).

Enter next person's information:
height (in inches)? 70.0
weight (in pounds)? 194.25

Enter next person's information:
height (in inches)? 62.5
weight (in pounds)? 130.5

Person 1 BMI = 27.868928571428572 overweight
Person 2 BMI = 23.485824 normal
Difference = 4.3831045714285715
// This program computes two people's body mass index (BMI) and compares them. The code uses Scanner for input, and parameters/returns.

import java.util.*; // so that I can use Scanner

public class BMI { // so that I can use Scanner
 public static void main(String[] args) {
 introduction();
 Scanner console = new Scanner(System.in);

 double bmi1 = person(console);
 double bmi2 = person(console);

 // report overall results
 report(1, bmi1);
 report(2, bmi2);
 System.out.println("Difference = " + Math.abs(bmi1 - bmi2));
 }

 // prints a welcome message explaining the program
 public static void introduction() {
 System.out.println("This program reads data for two people and computes their body mass index (BMI). ");
 System.out.println();
 }

 ...
Nested if/else, cont'd.

// reads information for one person, computes their BMI, and returns it
public static double person(Scanner console) {
 System.out.println("Enter next person's information:");
 System.out.print("height (in inches)? ");
 double height = console.nextDouble();

 System.out.print("weight (in pounds)? ");
 double weight = console.nextDouble();
 System.out.println();
 double bodyMass = bmi(height, weight);
 return bodyMass;
}

// Computes/returns a person's BMI based on their height and weight.
public static double bmi(double height, double weight) {
 return (weight * 703 / height / height);
}

// Outputs information about a person's BMI and weight status.
public static void report(int number, double bmi) {
 System.out.println("Person "+ number + " BMI = " + bmi);
 if (bmi < 18.5) {
 System.out.println("underweight");
 } else if (bmi < 25) {
 System.out.println("normal");
 } else if (bmi < 30) {
 System.out.println("overweight");
 } else {
 System.out.println("obese");
 }
}
The if/else hammer

- Just because you learned a new construct does not mean that every new problem has to be solved using that construct!

```java
int z;  // int z = Math.max(x, y);
if (x > y) {
    z = x;
} else {
    z = y;
}

double d = a;  // double d = Math.min(a, Math.min(b, c));
if (b < d) {
    d = b;
}
if (c < d) {
    d = c;
}
```

Copyright 2008 by Pearson Education
Loops with if/else

- if/else statements can be used with loops or methods:

```java
int evenSum = 0;
int oddSum = 0;
for (int i = 1; i <= 10; i++) {
    if (i % 2 == 0) {
        evenSum = evenSum + i;
    } else {
        oddSum = oddSum + i;
    }
}
System.out.println("Even sum: " + evenSum);
System.out.println("Odd sum: " + oddSum);
```
Nested `if/else`

reading: 4.2, 4.5

self-check: #6, 8, 9, 24-27

exercises: #10-14

videos: Ch. 4 #4
Sequential if bug

- What's wrong with the following code?

```java
Scanner console = new Scanner(System.in);
System.out.print("What percentage did you earn? ");
int percent = console.nextInt();
if (percent >= 90) {
    System.out.println("You got an A!");
}
if (percent >= 80) {
    System.out.println("You got a B!");
}
if (percent >= 70) {
    System.out.println("You got a C!");
}
if (percent >= 60) {
    System.out.println("You got a D!");
}
else {
    System.out.println("You got an F!");
}
...
Nested if/else

Chooses between outcomes using many tests

```java
if (test) {
 statement(s);
} else if (test) {
 statement(s);
} else {
 statement(s);
}
```

- Example:
  ```java
 if (number > 0) {
 System.out.println("Positive");
 } else if (number < 0) {
 System.out.println("Negative");
 } else {
 System.out.println("Zero");
 }
  ```
Nested if/else/if

- If it ends with else, one code path must be taken.
- If it ends with if, the program might not execute any path.

```java
if (test) {
 statement(s);
} else if (test) {
 statement(s);
} else if (test) {
 statement(s);
}
```

- Example:
  ```java
 if (place == 1) {
 System.out.println("You win the gold medal!");
 } else if (place == 2) {
 System.out.println("You win a silver medal!");
 } else if (place == 3) {
 System.out.println("You earned a bronze medal.");
 }
  ```
Structures

- **Exactly 1 path: (mutually exclusive)**

```java
if (test) {
 statement(s);
} else if (test) {
 statement(s);
} else {
 statement(s);
}
```

- **0 or 1 path:**

```java
if (test) {
 statement(s);
} else if (test) {
 statement(s);
} else if (test) {
 statement(s);
}
```

- **0, 1, or many paths: (independent tests, not exclusive)**

```java
if (test) {
 statement(s);
}
if (test) {
 statement(s);
}
if (test) {
 statement(s);
}
```
Which nested if/else?

- (1) if/if/if  (2) nested if/else  (3) nested if/else/if
  - Reading the user's GPA and printing whether the student is on the dean's list (3.8 to 4.0) or honor roll (3.5 to 3.8).
    - (3) nested if / else if
  - Printing whether a number is even or odd.
    - (N/A) simple if / else
  - Printing whether a user is lower-class, middle-class, or upper-class based on their income.
    - (2) nested if / else if / else
  - Reading a number from the user and printing whether it is divisible by 2, 3, and/or 5.
    - (1) sequential if / if / if
  - Printing a grade of A, B, C, D, or F based on a percentage.
    - (2) nested if / else if / else if / else if / else if
Factoring if/else code

- **factoring**: extracting common/redundant code
  - Factoring if/else code can reduce the size of if/else statements or eliminate the need for if/else altogether.

Example:

```java
if (a == 1) {
 x = 3;
} else if (a == 2) {
 x = 6;
 y++;
} else { // a == 3
 x = 9;
}
```

```java
x = 3 * a;
if (a == 2) {
 y++;
}
```
if (money < 500) {
    System.out.println("You have, \$" + money + " left.");
    System.out.print("Caution!  Bet carefully.");
    System.out.print("How much do you want to bet? ");
    bet = console.nextInt();
} else if (money < 1000) {
    System.out.println("You have, \$" + money + " left.");
    System.out.print("Consider betting moderately.");
    System.out.print("How much do you want to bet? ");
    bet = console.nextInt();
} else {
    System.out.println("You have, \$" + money + " left.");
    System.out.print("You may bet liberally.");
    System.out.print("How much do you want to bet? ");
    bet = console.nextInt();
}
Code after factoring

```java
System.out.println("You have, "+ money + " left.");
if (money < 500) {
 System.out.print("Caution! Bet carefully.");
} else if (money < 1000) {
 System.out.print("Consider betting moderately.");
} else {
 System.out.print("You may bet liberally.");
}
System.out.print("How much do you want to bet? ");
bet = console.nextInt();
```

- If the start of each branch is the same, move it before the if/else.
- If the end of each branch is the same, move it after the if/else.
- If similar but code exists in each branch, look for patterns.
The "dangling if" problem

What can be improved about the following code?

```java
if (x < 0) {
 System.out.println("x is negative");
} else if (x >= 0) {
 System.out.println("x is non-negative");
}
```

The second `if` test is unnecessary and can be removed:

```java
if (x < 0) {
 System.out.println("x is negative");
} else {
 System.out.println("x is non-negative");
}
```

This is also relevant in methods that use `if` with `return`...
if/else with return

- Methods can return different values using if/else:

  // Returns the largest of the three given integers.
  public static int max3(int a, int b, int c) {
    if (a >= b && a >= c) {
      return a;
    } else if (b >= c && b >= a) {
      return b;
    } else {
      return c;
    }
  }

  Whichever path the code enters, it will return the appropriate value.
  Returning a value causes a method to immediately exit.
  All code paths must reach a return statement.
  - All paths must also return a value of the same type.
public static int max3(int a, int b, int c) {
    if (a >= b && a >= c) {
        return a;
    } else if (b >= c && b >= a) {
        return b;
    } // Error: not all paths return a value
}

- The following also does not compile:

public static int max3(int a, int b, int c) {
    if (a >= b && a >= c) {
        return a;
    } else if (b >= c && b >= a) {
        return b;
    } else if (c >= a && c >= b) {
        return c;
    }
}
- The compiler thinks if/else/if code might skip all paths.
if/else question

A person's body mass index (BMI) is defined to be:

\[ BMI = \frac{\text{weight}}{\text{height}^2} \times 703 \]

<table>
<thead>
<tr>
<th>BMI</th>
<th>Weight class</th>
</tr>
</thead>
<tbody>
<tr>
<td>below 18.5</td>
<td>underweight</td>
</tr>
<tr>
<td>18.5 - 24.9</td>
<td>normal</td>
</tr>
<tr>
<td>25.0 - 29.9</td>
<td>overweight</td>
</tr>
<tr>
<td>30.0 and up</td>
<td>obese</td>
</tr>
</tbody>
</table>

- Write a program that produces the following output:

  This program reads data for two people and computes their body mass index (BMI) and weight status.

  Enter next person's information:
  height (in inches)? 70.0
  weight (in pounds)? 194.25

  Enter next person's information:
  height (in inches)? 62.5
  weight (in pounds)? 130.5

  Person #1 body mass index = 27.87
  overweight
  Person #2 body mass index = 23.49
  normal
  Difference = 4.38
// This program computes two people's body mass index (BMI) 
// and compares them. The code uses parameters and returns.

import java.util.*; // so that I can use Scanner

public class BMI { 
    public static void main(String[] args) { 
        introduction(); 
        Scanner console = new Scanner(System.in); 

        double bmi1 = person(console); 
        double bmi2 = person(console); 

        // report overall results 
        report(1, bmi1); 
        report(2, bmi2); 
        System.out.printf("Difference = %.2f\n", Math.abs(bmi1 - bmi2)); 
    }

    // prints a welcome message explaining the program
    public static void introduction() { 
        System.out.println("This program reads in data for two people"); 
        System.out.println("and computes their body mass index (BMI) "); 
        System.out.println("and weight status."); 
        System.out.println(); 
    }

    ...
Scanner BMI solution, cont.

// reads information for one person, computes their BMI, and returns it
public static double person(Scanner console) {
    System.out.println("Enter next person's information:");
    System.out.print("height (in inches)? ");
    double height = console.nextDouble();
    System.out.print("weight (in pounds)? ");
    double weight = console.nextDouble();
    System.out.println();
    double bodyMass = bmi(height, weight);
    return bodyMass;
}

// Computes/returns a person's BMI based on their height and weight.
public static double bmi(double height, double weight) {
    return (weight * 703 / height / height);
}

// Outputs information about a person's BMI and weight status.
public static void report(int number, double bmi) {
    System.out.printf("Person #%d body mass index = %.2f\n", number, bmi);
    if (bmi < 18.5) {
        System.out.println("underweight");
    } else if (bmi < 25) {
        System.out.println("normal");
    } else if (bmi < 30) {
        System.out.println("overweight");
    } else {
        System.out.println("obese");
    }
}
if/else, return question

- Write a method `countFactors` that returns the number of factors of an integer.
  - `countFactors(24)` returns 8 because 1, 2, 3, 4, 6, 8, 12, and 24 are factors of 24.

- Write a program that prompts the user for a maximum integer and prints all prime numbers up to that max.

  Maximum number? 52
  2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
  15 primes (28.84%)
if/else, return answer 1

// Prompts for a maximum number and prints each prime up to that maximum.
import java.util.*;

public class Primes {
    public static void main(String[] args) {
        // read max from user
        Scanner console = new Scanner(System.in);
        System.out.print("Maximum number? ");
        int max = console.nextInt();
        printPrimes(max);
    }

    // Prints all prime numbers up to the given maximum.
    public static void printPrimes(int max) {
        int primes = 0;
        for (int i = 2; i <= max; i++) {
            if (countFactors(i) == 2) { // i is prime
                System.out.print(i + " ");
                primes++;
            }
        }
        System.out.println();
        double percent = 100.0 * primes / max;
        System.out.printf("%d primes (%.2f%%)\n", primes, percent);
    }
}

// Prompts for a maximum number and prints each prime up to that maximum.
import java.util.*;

public class Primes {
    public static void main(String[] args) {
        // read max from user
        Scanner console = new Scanner(System.in);
        System.out.print("Maximum number? ");
        int max = console.nextInt();
        printPrimes(max);
    }

    // Prints all prime numbers up to the given maximum.
    public static void printPrimes(int max) {
        int primes = 0;
        for (int i = 2; i <= max; i++) {
            if (countFactors(i) == 2) { // i is prime
                System.out.print(i + " ");
                primes++;
            }
        }
        System.out.println();
        double percent = 100.0 * primes / max;
        System.out.printf("%d primes (%.2f%%)\n", primes, percent);
    }
}
// Returns how many factors the given number has.
public static int countFactors(int number) {
    int count = 0;
    for (int i = 1; i <= number; i++) {
        if (number % i == 0) {
            count++;
            } // i is a factor of number
    }
    return count;
}