
CSE142 - General Debugging Guide
DISCLAIMER: This guide will not fix your bugs for you but will help you understand

your errors. The causes listed in the tables below are “possible”, but not guaranteed.

Common Compiler Errors:
 Compiler errors are errors that prevent a program from compiling and are usually

a result of minor syntax issues that are generally easy fixes as long as you understand the

error message and can find where in the program it is occurring. Luckily, line numbers

that are in the vicinity of where the bug is (most of the time) are attached to the error.

Below is a table of common error messages that you might encounter in CSE 142.

Error Message “Possible” Cause

Cannot find symbol — class Your file is not saved in the same folder
as the file that refers to it.

Cannot find symbol — method The method name is wrong and/or it is
nonexistent

Cannot find symbol — variable You are using an undeclared variable or
variable name is misspelled

Class, interface, or enum expected Too many closing braces }

Illegal start of expression Missing closing braces } for a method or
extra parentheses ()

Reached end of file while parsing Missing closing braces } at end of file

<???> expected Missing <???> at area of line number

Class is public, should be declared in a
file…

Class name does’t match the saved filed
name (case sensitive!)

Incompatible types — expected type Your types are not matching up with
what’s given and what’s expected

Missing method body Method declaration line has a semicolon ;

Missing return statement There’s a path with no return value

Unreachable statement There’s code written after a return
statement.

Variable might not have been initialized A variable you are using might not have
an assigned value.

Unexpected type — required variable You used = instead of ==

Unclosed string literal Missing “” around a string

Common Runtime Errors:

 Runtime errors are errors that occur when the program is running. Your program

may compile successfully but still have errors, so watch out for these!

Caveats With Error Messages:

• Compiler does not always report the real error

• Error message may seem nonsensical

• Line numbers given in error messages may not be correct

• There may be multiple errors

Debugging Strategies:
 In cases where you encounter a bug that cannot be fixed using the table above or a

situation where there is no error message (logic error), you can’t just blindly stare at the

code and hope the bug will pop out to you. It’s also not a good strategy to just “shotgun”

every line of code and hope the random changes you make will fix the problem. There are

a variety of ways to debug a program but based on the type of bug you run into, you may

want to consider different approaches. Below are some of the most effective ways of

debugging.

JGrasp Debugger

 JGrasp has a really nice debugger that is extremely helpful for the majority of bugs

you will encounter. Here is a useful guide on how to use the debugger. The debugger

Error Message “Possible” Cause

No error message! My program appears
to be frozen!

You have an infinite loop somewhere

StringIndexOutOfBoundsException You’re accessing a character in a String
with an index that is nonexistent

ArrayIndexOutOfBoundsException You’re accessing an array element with an
index that is nonexistent

NullPointerException You’re accessing a null value (check
every period . or open bracket [on line of
error)

InputMismatchException Your Scanner is reading the wrong type

NoSuchElementException You’re reading past the end of a Scanner

https://courses.cs.washington.edu/courses/cse143/20wi/jgrasp.shtml

allows you to step through your code line by line until you hit a breakpoint. The reason

why this is useful is because the debugger lays out values held in all variables and

presents what’s happening visually. It can better your understanding of what the program

is doing, and often point the way to the mistake.

println Statements

 Another way to examine the state of the program is by printing out various states

of the program. By “logging” important values and information at various parts of the

program, you know when, where, and how the program is affecting the output. A

common way of using println statements is by marking the area surrounding the

potential problem so you know what’s happening before and after. Make sure you

remember to remove these debugging println statements after you find your bug!

Start Small

 An effective way to localize errors is to develop the program in bits. Start small

and add little pieces of code incrementally, testing every time in between. If there is an

error, it’s very likely that it originated from the last piece of code inserted. This will make

bug hunting a lot easier and faster. Another upside is that adding small amounts of code

usually leads to fewer errors at a time so you won’t get a long list of errors.

Commenting

 Commenting pieces of the code out is a good way to figure out which parts of your

program is causing the error. If you suspect somewhere in the code is creating the error,

comment it out and see if you are still getting the error. If you aren’t, voila! If you are,

then you know that the bug is likely in another part of the program and you can rinse and

repeat until you find where the error is occurring.

Take A Break

 If you’ve been wrestling with a bug for a while, stop and take a break! Let your

brain rest. The more frustrated you are, the harder it is to find bugs. After taking a break,

it can be easier to spot syntax errors, as well as logic errors.

	JGrasp Debugger
	println Statements
	Start Small
	Commenting
	Take A Break

