
CSE 142: Computer Programming I Spring 2021

Take-home Assessment 6: YazInterpreter due May 18, 2021, 11:59pm
This assignment will assess your mastery of the following objectives:

• Write a functionally correct Java program to produce specified console and file output.

• Use Scanner and File to read input from a file.

• Use PrintStream and File to write output to a file.

• Use methods of the String class to process and manipulate string values.

• Use methods to manage information flow and add structure to programs.

• Follow prescribed conventions for spacing, indentation, naming methods, and header comments.

Background
Note: You do not need to read this section to complete the assessment, but it provides some helpful
context that may make the assessment easier to understand.

Throughout the quarter, we have been working with the programming language Java. Java is an example
of a compiled language, meaning that before we can run our code, we need to run it through a tool
called a compiler to translate it into a language that the computer itself can understand and execute. But
not all languages work this way. Some languages are what are called interpreted languages, meaning
that the source code in the language can be read and executed directly using a tool called an interpreter.
The language you will work with on this assessment, YazLang, is an example of an interpreted language.

Sample Execution
Welcome to YazInterpreter!
You may interpret a YazLang program and output
the results to a file or view a previously
interpreted YazLang program.

(I)nterpret YazLang program, (V)iew output, (Q)uit? I
Input file name: input.txt
File not found. Try again: yazlang.txt
File not found. Try again: interpret-file.txt
Output file name: interpret-out.txt
YazLang interpreted and output to a file!

(I)nterpret YazLang program, (V)iew output, (Q)uit? View
(I)nterpret YazLang program, (V)iew output, (Q)uit? vi
(I)nterpret YazLang program, (V)iew output, (Q)uit? v
Input file name: interpret-out.txt

-9 -6 -3 0 3 6
39F
gucci ganggucci ganggucci ganggucci ganggucci ganggucci ganggucci gang
11C
humuhumunukunukuapua'a
5 12 19 26 33
24F

(I)nterpret YazLang program, (V)iew output, (Q)uit? q

Page 1 of 8

Sample Execution 2
Welcome to YazInterpreter!
You may interpret a YazLang program and output
the results to a file or view a previously
interpreted YazLang program.

(I)nterpret YazLang program, (V)iew output, (Q)uit? V
Input file name: simple-out.txt

15C
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
abba

(I)nterpret YazLang program, (V)iew output, (Q)uit? interpret
(I)nterpret YazLang program, (V)iew output, (Q)uit? I
Input file name: simple.txt
Output file name: blah output.txt
YazLang interpreted and output to a file!

(I)nterpret YazLang program, (V)iew output, (Q)uit? q

Program Behavior
In this assessment, you will create an interpreter for the programming language YazLang. (This language
was named a former CSE 142 Head TA and Instructor, Ayaz, who led development of the language and
this assignment.) When interpreting a YazLang file, the program prompts the user for input and output
file names (user input is underlined in the Sample Execution examples above). Then the program reads
and executes the YazLang commmands in the input file and outputs the results to a different file. The
user can later view the output file that was created or quit the program.

Console Output and Viewing a File
File Prompting
Depending on the command that the user selects, they will be asked to provide an input and/or output
file name. Note that all console input should be read in using the Scanner’s nextLine() method.

• Input Files: When prompting for an input file, the user may respond with the name of an input file
that does not exist. If the file does not exist, the user should be reprompted until they enter the
name of a file that does exist. See the logs of Sample Execution on the first and second pages for
examples of this reprompting behavior.

• Output Files: When prompting for an output file, the user may similarly respond with the name of
a file that does not exist. In this case, you should rely on the default behavior of the input/output
approaches we use. By default, if the output file does not exist, a new file will be created. And if
the file does already exist, its contents will be overridden.

You should assume that the input and output files are not the same.

Menu
The program’s menu should work properly regardless of the order or number of times its commands are
chosen. For example, the user should be able to run each command (such as I or V) many times if desired.
The user should also be able to run the program again and choose the V option without first choosing the
I option on that run, or to run the program and immediately quit with the Q option if so desired. Menu
options should be case-insensitive (e.g. both Q and q should cause the program to quit). If an invalid
option (anything other than I, V, or Q in any casing) is entered, the user should be reprompted.

Page 2 of 8

Viewing Output
When the user enters V from the menu, they should then be prompted to enter an input file to view. If
the input file does not exist, the user should be reprompted until they enter the name of a file that does
exist (see the "File Prompting" section for more details).

When you are viewing a given input file, you are simply reading and printing its contents, unchanged, to
the console. This functionality can be used to view previously-interpreted YazLang files, but it can be used
on any given input file that exists. Therefore, you do not need to test that the specified file is a YazLang
output file. Just output the file’s contents (even if it is a different type of file).

Interpreting and File Output
Interpreting YazLang Files

Sample Input File (interpret.txt)
RANGE -9 9 3
CONVERT 4 C
REPEAT "gucci_gang" 7
CONVERT 53 F
REPEAT "humu" 2 "nuku" 2 "apua'a" 1
RANGE 5 35 7
CONVERT -4 C

When the user enters I from the menu, they should then
be prompted to enter an input file and an output file. The
input file should contain YazLang commands. Your program
should then read the input file, execute each command, and
print the output to the output file. If the input file does
not exist, the user should be reprompted until they enter
the name of a file that does exist, but no reprompting is
necessary for the output file (see the "File Prompting"

section for more details).

Sample Output File (interpret-out.txt)
-9 -6 -3 0 3 6
39F
gucci ganggucci ganggucci ganggucci ganggucci ganggucci ganggucci gang
11C
humuhumunukunukuapua'a
5 12 19 26 33
24F

YazLang Commands
YazLang consists of three commands: CONVERT, RANGE, and REPEAT. These commands are described in
the table on the next page.

The syntax for YazLang is much simpler (and more limited) than Java’s. Every YazLang command follows
this pattern:

COMMAND arg1 arg2 ... argn

�

The three com-
mands will
always ap-
pear exactly
as CONVERT,
RANGE and
REPEAT (all
uppercase) with
the appropriate
arguments

That is, every command consists of a single token indicating the command to be executed, followed by
some number of arguments. Some commands take a specific number of arguments, while others may take
any number of arguments. Some commands may also take no arguments, in which case the command
token itself is considered a complete command. There will be one or more spaces or tabs between the
command and the arguments, and between each argument. In a YazLang program file, each command is
on its own line.

There are several example input and output files on the course website, along with supplemental videos
explaining the program’s desired behavior. We strongly recommend looking over these additional
resources to aid your understanding of how the program is intended to function before beginning
your implementation.

Page 3 of 8

Com-
mand

Arguments Description Examples Example
Output

CONVERT Always takes exactly two ar-
guments:

• arg1: the tempera-
ture to convert, as an
integer.

• arg2: either C or
F, indicating arg1’s
units of the tempera-
ture.

arg2 will always be either C
or F (case-insensitive).

Converts a temperature
from Celsius to Fahrenheit
or vice versa using the
following formulas:

F = 1.8 ∗ C + 32

C = (F − 32)/1.8

If the temperature is cur-
rently in Celsius (that is,
arg2 is C), it should be con-
verted to Fahrenheit. If
the temperature is currently
in Fahrenheit, it should
be converted to Celsius.
The output should be given
as an integer, with any
decimal places truncated
(which can be achieved by
casting the resulting cal-
culation to an int), and
should indicate the new
units.

CONVERT 0 c
CONVERT 32 F
CONVERT 9 C
CONVERT 9 f

32F
0C
48F
-12C

RANGE Always takes exactly three
arguments:

• arg1: the first integer
to be printed.

• arg2: the first integer
to not be printed.

• arg3: the amount to
increment by.

arg3 will always be greater
than zero.

Prints a sequence of inte-
gers starting from arg1 and
incrementing by arg3 un-
til a value greater than or
equal to arg2 is reached.
Does not print arg2 or any
value greater than it. Pro-
duces no output if arg1 is
greater than or equal to
arg2.

RANGE 0 5 1
RANGE 1 10 9
RANGE 2 1 1

0 1 2 3 4
1

REPEAT Takes an arbitrary number
of arguments, alternating
between strings and inte-
gers. The number of argu-
ments will always be even
(but might be zero). String
arguments will be enclosed
in quotation marks, and
may contain underscores.
Integer arguments will be
greater than or equal to
zero.

Prints out each string ar-
gument repeated the num-
ber of times indicated by
the following integer ar-
gument. The string ar-
guments should have the
outer quotation marks re-
moved and underscores re-
placed with spaces before
printing.

REPEAT "a" 5 "B" 2
REPEAT "yo_yo" 1 "_"a" 1
REPEAT "a" 1 "b" 0 "c" 2
REPEAT

aaaaaBB
yo yo "a
acc

Page 4 of 8

Creative Aspect (my-command.txt)
There are only three commands in YazLang at the moment, and to come up with more we have decided
to crowdsource! Along with your program, submit a file called my-command.txt with a proposal for a new
command to add to YazLang. Your proposal must include the following elements:

• The name of the command

• The arguments the command will take

• A description of what the command does

• At least one sample input and sample output

You should format your proposal like the example below. We have also posted examples on the course
website. You do not need to provide an implementation for your custom command.

repeat-proposal.txt
REPEAT

REPEAT takes an arbitrary number of pairs of Strings and integers and
creates one large string with each string repeated the number of times
indicated by the following integer.

Input: REPEAT "ha" 3 "_" 1 "lol" 2
Output: "hahaha lollol"

Development Strategy
Once again, this assessment will be best approached in smaller chunks. We recommend the following
strategy:

�

"Hard-coding"
refers to em-
bedding a value
directly in your
program rather
than accepting
it as input. For
example, you
might start by
having your
program al-
ways process
the command
CONVERT 0 C
instead of a dif-
ferent command
each time it
runs.

(1) File prompting: Add code to prompt the user for an input to use (be sure to remove your hard-
coding when you reach this point).

(2) File reprompting: Handle the case when the user inputs invalid file names when prompted for input
files.

(3) View: Write code to read and print the contents of an input file to the console. This can be used
for viewing YazLang output. (Even though you can’t intepret YazLang programs yet, you can test
this on any input file you like, including a YazLang program itself.)

(4) Menu/Reprompting: Add code to allow the user to select whether to intepret, view, or quit and to
reprompt if invalid mode is chosen or if an input file does not exist. Since you haven’t implemented
the "interpret" functionality yet, we suggest simply including the file prompting and "YazLang
interpreted and and output to a file!" println when the user selects "interpret" for now.

(5) Interpret a single command: Write code to execute a single YazLang command and print the
results to the console. You may want to begin by hard-coding the command and changing it as you
debug. You can then move on to reading a single command from an input file. We recommend
approaching the commands one at a time and in the order the appear in the above table (CONVERT,
then RANGE, then REPEAT).

(6) Intepret a YazLang file: Modify your code to read each line from a YazLang input file, execute
the command, and print the output to the console. Hard-code the file name for now.

(7) File output: Modify your code to produce output to a file instead of the console. Again, hard-code
the file name for now.

Page 5 of 8

Hints
The following suggestions and hints may help you be more successful on this assessment:

• When reading input from a file, you may need to use a mixture of line-based and token-based
processing as shown in class and described in chapter 6 of the textbook. (The FindMinAndMax,
RateMovies, and Payroll programs from class will be particularly helpful.)

• To check if a file exists, you should use methods from the File class. The textbook describes an
alternate technique for dealing with missing files using try/catch statements, but you should NOT
use this approach on this assessment (try/catch statements are considered "forbidden features" in
this class).

• You may find the startsWith method of the String class useful for determining which type of
command you are processing.

• You may also find the replace method of the String class useful for replacing occurrences of one
character with another. For example, the code:

String str = "mississippi";
str = str.replace("s", "*");

will result in the string str containing the value "mi**i**ippi".

• The output from RANGE should end with a space—you do not need to use a fencepost approach for
the output of this command.

• If your program is generating InputMismatchException errors, you are likely reading the wrong
type of values from your Scanner (for example, using nextInt to read a string).

• If your program is generating NoSuchElementException errors, you are likely attempting to read
past the end of a file or line.

Debugging Tips
You may want to initially "hard-code" the input and output filenames; in other words, you may want to
just use fixed file names in your code rather than prompting the user to enter the file names. You may
also want to temporarily print extra "debug" text to the console while developing your program, such as
printing each command or argument as you read it. Be sure to remove this extra output along with any
hard-coded file names before submitting your program.

It is easier to debug this problem using a smaller input file with fewer commands and arguments. The
file simple.txt on the course website has a short YazLang program that will be useful for testing your
program at first.

Implementation Guidelines
User Input/File Input
All console input should be processed using a Scanner and should be read using the nextLine method
only. All file input should be processed using a File object and a Scanner as shown in class. File output
should be performed using a File and a PrintStream as shown in class.

�

Be sure to use
nextLine for all
console input.

When interpreting a YazLang program, your program should break the input into lines and then into tokens
using Scanner objects so that you can identify the command and look for all its arguments. Follow the
process demonstrated in class and in the textbook.

You may assume that each line of any input file provided to the I option will contain a valid YazLang
command (see below). There will not be any blank lines or lines that are not YazLang commands in these
input files. You do not need to check the file name or extension, and you should not assume that the file

Page 6 of 8

name or extension will have any particular format. In particular, DO NOT assume that all input files will
end with .txt.

You may assume that whenever a YazLang command is expected, it will be valid. Specifically, you may
assume that:

• each command will be on its own line

• the first word on each line will be a valid YazLang command (CONVERT, RANGE, or REPEAT)

• each command will have an appropriate number of arguments

• all arguments will be of the correct type and will meet the requirements outlined above

Permitted Java Features
For this assessment, you are restricted to Java concepts covered in chapters 1 through 6 of the textbook.
In particular, you ARE NOT allowed to use arrays on this assessment. In addition, you may not use
the repeat method in the Java String class. You must implement this functionality yourself for the
YazLang REPEAT command.

Code Quality Guidelines
In addition to producing the desired behavior, your code should be well-written and meet all expectations
described in the grading guidelines and the Code Quality Guide. For this assessment, pay particular
attention to the following elements:

Capturing Structure
Your main method in this program may have more code than it has in previous assessments. In particular,
you may include a limited amount of output and some control flow constructs (e.g. a loop to drive the
menu) in main. However, your main method must remain a concise summary of your program’s structure,
and you must still utilize methods to both capture structure and eliminate redundancy.

Each method should perform a single, coherent task, and no method should do too much work. To receive
full credit, your program must include a separate method to execute each type of command, plus four (4)
other non-trivial method besides main. (Therefore, your program should have a total of at least seven (7)
non-trivial methods.)

�

Your program
must include a
single method
to process each
type of YazLang
command.Using Parameters and Returns

Your program should be a well-structured program as described above, utilizing parameters and returns
as necessary. Your methods should not accept unnecessary or redundant parameters. In particular, your
program should include only a single Scanner connected to System.in, though you may have additional
Scanners as well. You can (and probably should) use objects (such as Scanner, File, or PrintStream)
as parameters and/or return values.

Code Aesthetics
Your code should be properly indented, make good use of blank lines and other whitespace, and include no
lines longer than 100 characters. Your class, methods, variables, and constant should all have meaningful
and descriptive names and follow the standard Java naming conventions. (e.g. ClassName, methodOr-
VariableName, CONSTANT_NAME) See the Code Quality Guide for more information.

Commenting
Your code should include a header comment at the start of your program, following the same format
described in previous assessments. Your code should also include a comment at the beginning of each
method that describes that methods behavior. Method comments should also explicitly name and describe
all parameters to that method and describe the method’s return value (if it has one). Comments should be

Page 7 of 8

https://courses.cs.washington.edu/courses/cse142/20au/syllabus.html#takehomeassessmentgrading
https://courses.cs.washington.edu/courses/cse142/20au/quality.html
https://courses.cs.washington.edu/courses/cse142/20au/quality.html

written in your own words (i.e. not copied and pasted from this spec) and should not include implementation
details (such as describing loops or expressions included in the code). See the Code Quality Guide for
examples and more information.

Running and Submitting
You can run your YazIntepreter program by clicking the "Activate the Terminal" message in Ed. (Note
that this is a different process than previous assessments.) You may also need to click the arrow at the
bottom of the window to reveal the terminal. This will compile and execute your code and show you any
errors, or the output of your program if it runs correctly. If you believe your output is correct, you can
submit your work by clicking the "Mark" button in the Ed assessment. You will see the results of some
automated tests along with tentative grades. These grades are not final until you have received
feedback from your TA.

You may submit your work as often as you like until the deadline; we will always grade your most recent
submission. Note the due date and time carefully—work submitted after the due time will not be
accepted.

Getting Help
If you find you are struggling with this assessment, make use of all the course resources that are available
to you, such as:

• Reviewing relevant examples from lessons, section, and lab

• Reading the textbook

• Visiting support hours

• Posting a question on the message board

Collaboration Policy
Remember that, while you are encouraged to use all resources at your disposal, including your classmates,
all work you submit must be entirely your own. In particular, you should NEVER look at a solution
to this assessment from another source (a classmate, a former student, an online repository, etc.). Please
review the full policy in the syllabus for more details and ask the course staff if you are unclear on whether
or not a resource is OK to use.

Reflection
In addition to your code, you must submit answers to short reflection questions. These questions will help
you think about what you learned, what you struggled with, and how you can improve next time. The
questions are given a YazInterpreter Reflection slide in the Ed lesson; type your responses directly
into those textboxes.

Page 8 of 8

https://courses.cs.washington.edu/courses/cse142/20au/quality.html#commentingyourcode
https://us.edstem.org/courses/4800/lessons/
https://courses.cs.washington.edu/courses/cse142/21sp/staff.html
https://us.edstem.org/courses/4800/discussion
https://courses.cs.washington.edu/courses/cse142/21sp/syllabus.html#collaborationandacademicconduct

