
CSE 142: Computer Programming I Spring 2021

Take-home Assessment 1: Song due April 6, 2021, 11:59pm
This assignment will assess your mastery of the following objectives:

• Write a functionally correct Java program to produce specified console output.

• Write static, void methods to provide structure to the code and eliminate redundancy.

• Write and call static methods to manage the flow of control in a program.

• Follow prescribed conventions for spacing, indentation, naming methods, and header comments.

Program Behavior
You will write a Java program that produces as output a cumulative song in which successive verses build
on previous verses (as described on Wikipedia). In particular, we will produce the song "There Was an
Old Woman Who Swallowed a Fly." Your program should produce exactly the output below, except for
the custom verse (see below). You can use the Mark button in Ed to check if your output is correct.

�

You must ex-
actly match the
output here,
including both
content and
format. Check
your output
carefully!

Expected Output
There was an old woman who swallowed a fly.
I don't know why she swallowed that fly,
Perhaps she'll die.

There was an old woman who swallowed a spider,
That wriggled and iggled and jiggled inside her.
She swallowed the spider to catch the fly,
I don't know why she swallowed that fly,
Perhaps she'll die.

There was an old woman who swallowed a bird,
How absurd to swallow a bird.
She swallowed the bird to catch the spider,
She swallowed the spider to catch the fly,
I don't know why she swallowed that fly,
Perhaps she'll die.

There was an old woman who swallowed a cat,
Imagine that to swallow a cat.
She swallowed the cat to catch the bird,
She swallowed the bird to catch the spider,
She swallowed the spider to catch the fly,
I don't know why she swallowed that fly,
Perhaps she'll die.

There was an old woman who swallowed a dog,
What a hog to swallow a dog.
She swallowed the dog to catch the cat,
She swallowed the cat to catch the bird,
She swallowed the bird to catch the spider,
She swallowed the spider to catch the fly,
I don't know why she swallowed that fly,
Perhaps she'll die.

<< Your custom sixth verse goes here >>

There was an old woman who swallowed a horse,
She died of course.

Page 1 of 4

http://en.wikipedia.org/wiki/Cumulative_song


Custom Verse
As indicated above, you should include a custom sixth verse that matches the pattern of the first five
verses. This custom verse should be printed in place of "« Your custom sixth vese goes here » "
in the output above. (You should not print that placeholder text.) For example, some versions of the
song have a sixth verse for swallowing a goat ("Just opened her throat to swallow a goat"). Notice that
the first two lines should either end in the same word (fly/fly, bird/bird, cat/cat, etc.) or should end with
rhyming words (spider/inside her). You should not simply copy one of the previous animals or to use the
verses you’ll find on the web (e.g., goat and cow); you should write your own custom verse. The text of
the verse should not include hateful, offensive, or otherwise inappropriate speech.

Implementation Guidelines
In addition to producing the desired behavior, your code should be well-written and meet all expectations
described in the grading guidelines and the Code Quality Guide. For this assessment, pay particular
attention to the following elements:

Capturing Structure
�

This means
you will have
at least seven
methods in
your program
(though you
might want or
need more).

You should use static methods to accurately capture the structure of the song in your code. You must,
for example, have a separate method for each of the seven verses of the song (verses are separated by
blank lines in the output). As a result, you will not have any println statements in main except perhaps
a println that produces a blank line.

In addition, you should not not have any methods that include only a single println statement. (Calls
to methods like these should be replaced by the direct call to println.) All methods should capture a
meaningful portion of the program that is not already captured by another method.

Avoiding Redundancy
You should also use static methods to avoid "full-line" redundancy. In particular, you must make sure
that you use only one println statement for each distinct line of the song. For example, the line:

Perhaps she’ll die.

appears several times in the output. To receive full credit, you must have only one println statement in
your program that produces this line.

�

Count carefully–
the number
of non-blank
println calls
should equal
the number of
unique lines in
the song (in-
cluding your
custom lines).

On the other hand, you are not required to fix "partial-line" redundancy, as in pairs of lines like these:

There was an old woman who swallowed a horse,
There was an old woman who swallowed a dog,

or these:

She swallowed the dog to catch the cat,
She swallowed the dog to catch the bird,

It is not possible to avoid this type of redundancy using material we have covered so far (methods and
println statements), so you are not expected to do so.

Permitted Java Features
�

The only state-
ments in your
program should
be method calls
and printlns.
There should be
no prints.

You should not use any Java features that we have not covered in class. For this assessment, you
should limit yourself to the Java features covered in chapter 1 of the textbook. You should also not
use System.out.print() statements even though they are covered in chapter 1. All output (including
the last line) should be produced using System.out.println(). You also may not use the \n escape
sequence.

Page 2 of 4

https://courses.cs.washington.edu/courses/cse142/21sp/syllabus.html#takehomeassessmentgrading
https://courses.cs.washington.edu/courses/cse142/21sp/quality.html


Indentation and Whitespace
Your program should be properly indented and make proper use of blank lines as shown in class and
discussed in the Code Quality Guide.

Header Comments
You should include a comment at the beginning of your program with some basic identifying information
and a description of the program. Your comment should look something like this:

// Grace Hopper << replace with your name >>
// 4/6/2021
// CSE142
// TA: Ada Lovelace << replace with your TA's name >>
// Take-home Assessment #1
//
// This program will... << add a brief description of the program >>

You can include additional information if you like, but make sure at least these details are present. Your
program description should be specific to this assessment, but not include any implementation details.

Your code should also include a comment at the beginning of each method that describes that methods
behavior. See the Code Quality Guide for more information.

Getting Help
If you find you are struggling with this assessment, make use of all the course resources that are available
to you, such as:

• Reviewing relevant examples from lessons, section, and lab

• Reading the textbook

• Visiting support hours

• Posting a question on the message board

Collaboration Policy
Remember that, while you are encouraged to use all resources at your disposal, including your classmates,
all work you submit must be entirely your own. In particular, you should NEVER look at a solution
to this assessment from another source (a classmate, a former student, an online repository, etc.). Please
review the full policy in the syllabus for more details and ask the course staff if you are unclear on whether
or not a resource is OK to use.

Reflection
In addition to your code, you must submit answers to short reflection questions. These questions will help
you think about what you learned, what you struggled with, and how you can improve next time. The
questions are given in the file SongReflection.txt in the Ed lesson; type your responses directly into
that file.

Running and Submitting
You can run your program by clicking the "Run" button in Ed. This will compile and execute your code
and show you any errors, or the output of your program if it runs correctly. If you believe your output is
correct, you can submit your work by clicking the "Mark" button in the Ed lesson. You will see the results

Page 3 of 4

https://courses.cs.washington.edu/courses/cse142/21sp/quality.html#javaconventions
https://courses.cs.washington.edu/courses/cse142/21sp/quality.html#commentingyourcode
https://us.edstem.org/courses/4800/lessons/
https://courses.cs.washington.edu/courses/cse142/21sp/staff.html
https://us.edstem.org/courses/4800/discussion
https://courses.cs.washington.edu/courses/cse142/21sp/syllabus.html#collaborationandacademicconduct


of some automated tests along with tentative grades. This grade is not final until you have received
feedback from your TA.

You may submit your work as often as you like until the deadline; we will always grade your most recent
submission. Note the due date and time carefully—work submitted after the due time will not be
accepted.

Page 4 of 4


