
CSE 142 Section Handout #4

Challenge Sheet
	

You are not expected or required to solve these problems. These problems are designed for
students who want a fun, extra challenge to test their skills on harder programming problems.

Have fun!

Pascal's	Triangle	is	a	famous	triangle	arrangement	of	numbers	that	has	a	lot	of	interesting	
mathematical	properties.	Pascal's	Triangle	starts	out	with	the	top	two	rows:	1	and	1	1.	Then	
each	row	after	that	starts	and	ends	with	a	1	while	every	other	number	in	the	row	is	a	sum	of	
the	two	numbers	above	it.	Note	that	this	can	go	on	infinitely	and	Pascal’s	Triangle	can	have	an	
arbitrary	number	of	rows.	An	example	of	Pascal’s	Triangle	up	to	the	5th	row	is	shown	below	on	
the	left.	
	
One	of	the	more	useful	properties	of	Pascal’s	Triangle	is	its	connection	to	binomial	coefficients.	
It	turns	out	you	can	calculate	any	number	in	Pascal’s	Triangle	by	using	nCr	where	n	is	the	row	
number	and	r	is	the	element	in	that	row	(nCr	is	shorthand	for	“n	Choose	r”	which	some	of	you	
may	recognize	from	combinations).	You	can	use	this	knowledge	to	construct	Pascal’s	Triangle	as	
seen	below	on	the	right.	
	

The	formula	for	nCr	is:			
!!

! – ! ! !!
			and	is	often	written	as		 !! 	

	

Note	that	r!	is	just	shorthand	for	r	×	(r	-1)	×	….	×	2	×	1.	For	example,	4!	Is	just	4	×	3	×	2	×	1	
	
	
	
	
	

	

	
	
	
	
	
Write	a	method	named	pascalsTriangle	that	takes	in	an	integer	as	a	parameter	and	prints	out	
that	number	of	rows	of	Pascal’s	Triangle.	For	example,	pascalsTriangle(6)	would	produce	the	
following:	
	
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

You	may	notice	once	you’re	done	with	this	method,	that	you	start	getting	weird	values	with	
parameter	inputs	of	more	than	13.	This	is	normal	and	something	to	do	with	how	integers	work	
in	Java.	It	should	only	need	to	work	with	input	values	up	to	13.	 	

CSE 142 Section Handout #4

Solutions (Two Possible Solutions Provided)
1.
public static void pascalsTriangle(int numberofRows) {
 for (int row = 0; row < numberofRows; row++) {
 for (int element = 0; element <= row; element++) {
 System.out.print(combination(row, element) + " ");
 }
 System.out.println();
 }
}

public static int combination(int n, int r) {
 int nFactorial = 1;
 int rFactorial = 1;
 int nMinusRFactorial = 1;
 for (int i = 1; i <= n; i++) {
 nFactorial *= i;
 }
 for (int i = 1; i <= r; i++) {
 rFactorial *= i;
 }
 for (int i = 1; i <= n - r; i++) {
 nMinusRFactorial *= i;
 }
 return nFactorial / (rFactorial * nMinusRFactorial);
}

2.
public static void pascalsTriangle(int numberofRows) {
 for (int row = 1; row <= numberofRows; row++) {
 int element = 1;
 for (int index = 1; index <= row; index++) {
 System.out.print(element + " ");
 element *= (row - index);
 element /= index;
 }
 System.out.println();
 }
}

