
1 of 6

CSE 142, Winter 2020
Programming Assignment #8: Critters (20 points)

Due Wednesday, March 11, 2020, 11:59 PM

This assignment focuses on classes and objects. Turn in Bear.java, Lion.java, Giant.java, and Husky.java.

Download supporting files on the course web site. Run CritterMain.java to start the simulation.

Program Behavior:
You are provided with several client program classes that implement a graphical

simulation of a 2D world of animals. You will write classes that define the

behavior of those animals. Animals move and behave in different ways. In this

world, animals propagate their species by infecting other animals with their

DNA, which transforms the other animal into the infecting animal’s

species. Your classes will define the unique behaviors for each animal.

For this assignment you will be given a lot of supporting code that runs the

simulation. You are just defining the individual "critters" that wander around this world trying to infect each other. While it

is running, the simulation will look like the image on the right.

Critters move around in a world of finite size that is enclosed on all four sides by walls. You can include a constructor for

your classes to set up each Critter's state correctly if you would like, although it should generally be a zero-argument

constructor (one that takes no arguments). There will be one exception to this rule for your Bear critter, described below.

Each of your critter classes should extend a class known as Critter. So, each Critter class will look like this:

public class SomeCritter extends Critter {

 ...

}

The "extends" clause in the header of this class establishes an inheritance relationship. This is discussed in Chapter 9 of the

textbook, although you don’t need a deep understanding of the concept for this assignment. The main point to understand is

that the Critter class has several methods and constants defined for you. So, by saying that you extend the class, you

inherit these methods and constants. Inheritance makes it easier for our code to talk to your critter classes, and it helps us be

sure that all your critter classes will implement all the methods we need. You should then give new definitions to certain

methods to define the behavior of your critters.

There are three key methods in the Critter class that you will redefine (override) in your own classes. When you override

these methods, you must use exactly the same method header as what you see below. The three methods you may override

for each Critter class are:

 public Action getMove(CritterInfo info)

Each round, the client calls this method on your animal to find out what action it should take on this turn.

(See below for more information on CritterInfo and Action.)

 public Color getColor()

Each round, the client calls this method on your animal to find out what color it should appear.

 public String toString()

Each round, the client calls this method on your animal to find out what text it should be displayed as.

By declaring that your class extends Critter as shown above, you receive a default version of these methods. The default

behavior is to always turn left (a move of Action.LEFT), to use the color black, and to display as a "?". If you don't want

these defaults, rewrite (override) the necessary methods in your class with your own behavior.

2 of 6

The getMove method will return one of the four Action constants described below. The getColor method will return

whatever color you want the simulator to use when drawing your critter. And the toString method will return whatever

text you want the simulator to use when displaying your critter (usually but not always a single character).

For example, below is a definition for a critter called Food. Food always infects and displays itself as a green letter F:

import java.awt.*;

public class Food extends Critter {
 public Action getMove(CritterInfo info) {
 return Action.INFECT;
 }

 public Color getColor() {
 return Color.GREEN;
 }

 public String toString() {
 return "F";
 }
}

Notice that it begins with an import declaration for access to the Color class. All of your Critter classes will have the

basic form shown above, except yours may have fields, a constructor, and more sophisticated code.

Movement:
On each round of the simulation, the simulator asks each critter object what action it wants to perform (by calling the getMove

method). Each round, a critter will take one of the following actions:

Action Constant Description

Action.HOP Move forward one square in the critter’s current direction

Action.LEFT Turn left (rotate 90 degrees counter-clockwise)

Action.RIGHT Turn right (rotate 90 degrees clockwise)

Action.INFECT Infect the critter in front of you

The getMove method is passed an object of type CritterInfo. This is an object that provides you information about the

current status of the critter. It includes eight methods for asking about surrounding neighbors, plus a method to find out the

current direction the critter is facing. Below are the methods of the CritterInfo class:

CritterInfo Method Description

public Direction getDirection() returns the direction you are facing

public Neighbor getFront() returns the neighbor in front of you

public Neighbor getBack() returns the neighbor in back of you

public Neighbor getLeft() returns the neighbor to your left

public Neighbor getRight() returns the neighbor to your right

public boolean frontThreat() returns whether there is an enemy facing you in front of you

public boolean backThreat() returns whether there is an enemy facing you in back of you

public boolean leftThreat() returns whether there is an enemy facing you to your left

public boolean rightThreat() returns whether there is an enemy facing you to your right

3 of 6

The getDirection method returns what direction you are facing as one of four Direction constants. The next group of

four CritterInfo methods (the “get” methods) return one of four Neighbor constants to represent the different kind of

neighbors you might encounter. Below are the values of these constants:

Direction

Constant

Description

Direction.NORTH facing north

Direction.SOUTH facing south

Direction.EAST facing east

Direction.WEST facing west

Neighbor

Constant

Description

Neighbor.WALL The neighbor in that direction is a wall

Neighbor.EMPTY The neighbor in that direction an empty square

Neighbor.SAME The neighbor in that direction is a critter of your species

Neighbor.OTHER The neighbor in that direction is a critter of another species

Notice that you are only told whether critters are of your species or some other species; you cannot find out exactly what

species they are. The final group of four methods (the “threat” methods) tell you whether there is an enemy in each

direction that is facing you (which means they could potentially infect you). An enemy is a critter of a different species.

This assignment will be confusing at first, because you do not write the main method of the executed program; your code is

not in control of the overall execution. Instead, your objects are part of a larger system. You might want your critters make

several moves at once using a loop, but you can't. The only way a critter can move is to wait for the simulator to ask it for a

single move and return that move. This is typical of object-oriented programming, though it might be frustrating at first.

Critter Classes:
The following are the four critter classes to implement. Each has one constructor that should accept exactly the

parameter(s) in the table. For random moves, each choice should be equally likely; use a Random object to make these

choices. You must create exactly the behavior described below for each critter. See the “Debugging Strategy” section for

more information on how to test your critters.

Bear

constructor public Bear(boolean polar)

getColor Color.WHITE for a polar bear (when polar is true), Color.BLACK otherwise (when polar

is false)

toString Alternate on each move between a forward slash ("/") and a backslash ("\") starting with

a forward slash ("/").

getMove Infect if an enemy is in front

Otherwise hop if possible

Otherwise turn left

The Bear constructor accepts a parameter indicating whether or not the bear is a polar (white) bear. When the parameter is

true, the resulting bear will be white. When the parameter is false, the resulting bear will be black. The simulator deals

with deciding whether each bear will be white or black; your class just needs to ensure that you create the right color bear

based on the parameter.

Lion

constructor public Lion()

getColor Randomly pick one of Color.RED, Color.GREEN, or Color.BLUE and use that color

for three moves, then randomly pick one of those colors again for the next three moves,

then randomly pick one of those colors for the next three moves, and so on.

toString "L"

getMove Infect if an enemy is in front

Otherwise if a wall is in front or to the right, then turn left

Otherwise if a fellow Lion is in front, then turn right

Otherwise hop

4 of 6

Giant

constructor public Giant()

getColor Color.GRAY

toString "fee" for 6 moves, then "fie" for 6 moves, then "foe" for 6 moves, then "fum" for 6

moves, then repeat.

getMove Infect if an enemy is in front

Otherwise hop if possible

Otherwise turn right.

Husky

constructor public Husky() (must not accept any parameters)

all behavior you decide (see below)

As noted above, you will determine the behavior of your Husky class. Part of your grade will be based upon writing creative

and non-trivial Husky behavior. Your Husky's behavior should not be trivial or closely match that of an existing animal

shown in class.

Unlike on most assignments, your Husky can use advanced material you happen to know in Java (with some restrictions).

If you wish to use particularly complex material in your Husky, contact your TA or instructor to make sure it will be

compatible with our system.

Running the Simulator:
Each of your critter classes has a pattern to it and at first all of your critters will be in sync with each other. For example, all

of the bears will be displayed as slashes and all of the giants will be displayed as "fee." But as critters become infected, they

will get out of sync. A newly constructed giant will display itself as "fee" for its first six moves, so it won’t necessarily

match the other giants if they are somewhere in the middle of their pattern. Doesn’t worry about the fact that your critters

end up getting out of sync in this way.

Your classes should be stored in files called Bear.java, Lion.java, Giant.java, and Husky.java. The files that you

need for this assignment will be included in a zip file called assign8.zip available from the class web page. All of these

files must be included in the same folder as your Critter files. You should download and unzip assign8.zip, then add your

four classes to the folder, compile CritterMain and run CritterMain.

The simulator has several supporting classes that are included in assign8.zip (CritterModel, CritterFrame, etc). In

general, you can ignore these classes. When you compile CritterMain, these other classes should be compiled. If they are

not, you can compile them manually in the following order: Critter.java, CritterModel.java,

CritterPanel.java, CritterMain.java. Once you have compiled these classes once, the only classes you will have to

modify and recompile are CritterMain (if you change what critters to include in the simulation) and your own individual

Critter classes.

You will also be given two sample critter classes. The first is the Food class that appears earlier in the writeup. The second

is a class called FlyTrap that was discussed in lecture. Both of these class definitions appear in assign8.zip and should

serve as examples of how to write your own critter classes.

You will notice that CritterMain has lines of code like the following:

// frame.add(30, Lion.class);

You should uncomment these lines of code as you complete the various classes you have been asked to write. Then critters

of that type will be included in the simulation.

5 of 6

Husky Strategy:

For those who want to produce huskies that "win" in the sense of taking over the world, you will want to understand some

subtleties about the simulation.

 In general, the simulator allows each critter to make a move and it scrambles the order in which it does that. This

becomes important, for example, when two critters are facing each other and each wants to infect the other. The

simulator will randomly decide which critter goes first and the one that goes first will win.

 If a critter successfully hops during its turn, it cannot be infected for the rest of the round. Once a critter has been

infected, it cannot be infected again by a different critter during the same round, and if the infected critter hadn’t

already completed its move, it won’t get a turn.

 Critters that infect after a hop are slightly favored in that around 20% of the time an infect action will fail if the critter

did not hop on its previous move.

When a critter is infected, it is replaced by a brand new critter of the other species, but that new critter retains the properties

of the old critter. That is, the new critter will be placed at the same location and be facing in the same direction.

Debugging Strategy:

The simulator provides great visual feedback about where critters are, so you can watch them move around the world. But it

doesn’t give very helpful feedback about what direction critters are facing. The simulator has a “debug” button that makes

this easier to see. When you request debug mode, your critters will be displayed as arrow characters that indicate the

direction they are facing. The simulator also indicates the “step” number as the simulation proceeds (initially showing a 0).

Since the behavior of this assignment is visual, there is no Output Comparison Tool. Instead, below are some suggestions for

how you can test your critters and descriptions of what the general critter behavior should look like:

 Bear: Try running the simulator with just 30 bears in the world. You should see about half of them being white and

about half being black. Initially they should all be displayed with slash characters. When you click “step,” they

should all switch to backslash characters. When you click “step” again they should go back to slash characters. And

so on. When you click “start,” you should observe the bears heading towards walls and then hugging the walls in a

counterclockwise direction. They will sometimes bump into each other and go off in other directions, but their

tendency should be to follow along the walls.

 Lion: Try running the simulator with just 30 lions in the world. You should see about one third of them being red

and one third being green and one third being blue. Use the “step” button to make sure that the colors alternate

properly. They should keep these initial colors for three moves. That means that they should stay this color while

the simulator is indicating that it is step 0, step 1, and step 2. They should switch colors when the simulator indicates

that you are up to step 3 and should stay with these new colors for steps 4 and 5. Then you should see a new color

scheme for steps 6, 7, and 8. And so on. When you click “start” you should see them bouncing off of walls. When

they bump into a wall, they should turn around and head back in the direction they came. They will sometimes bump

into each other as well. They shouldn’t end up clustering together anywhere.

 Giant: Try running the simulator with just 30 giants in the world. They should all be displayed as “fee.” This should

be true for steps 0, 1, 2, 3, 4, and 5. When you get to step 6, they should all switch to displaying “fie” and should

stay that way for steps 6, 7, 8, 9, 10, and 11. Then they should be “foe” for steps 12, 13, 14, 15, 16, and 17. And

they should be “fum” for steps 18, 19, 20, 21, 22, and 23. Then they should go back to “fee” for 6 more steps, and so

on. When you click “start,” you should observe the same kind of wall-hugging behavior that bears have, but this

time in a clockwise direction.

Development Strategy:
The simulator runs even if you haven't completed all the critters. The classes increase in difficulty from Bear to Lion to

Giant. We suggest doing Bear first. Look at Food.java and the lecture/section examples to see the general structure.

It will be impossible to implement each behavior if you don't have the right state in your object. As you start writing each

class, spend some time thinking about what state will be needed to achieve the desired behavior.

6 of 6

One thing that students in the past have found particularly difficult to understand is the various constructors for each type of

animal. Some of the constructors accept parameters that guide the behavior of later methods of the animal. It is your job to

store data from these parameters into fields of the animal as appropriate, so that it will "remember" the proper information

and will be able to use it later when the animal's other methods are called by the simulator.

Test your code incrementally. A critter class will compile even if you have not written all of the methods (the unwritten ones

will use default behavior). So, add one method, run the simulator to see that it works, then add another.

Style Guidelines:
Since this assignment is largely about classes and objects, much of the style grading for this assignment will be about how well

you follow proper object-oriented programming style. You should encapsulate the data inside your objects, initialize

fields in constructors, and you should not declare unnecessary data fields to store information that isn't vital to the state

of the object. Style points will also be awarded for expressing each critter's behavior elegantly.

Be sure that your code is tied to actual moves made by a critter (i.e., that changes to state occur in the getMove method). For

example, the bear is supposed to be displayed alternately as a slash or backslash. This should happen as the getMove

method is called. Your code should work properly even if toString is called twice and then getMove is called. The

alternation should happen for each move, not for each call on toString. This also applies to the behavior of giants and

lions because they are defined in terms of changes happening after a given number of moves.

Another aspect of the style of this program is inheritance. Your critter classes should properly extend a superclass as described.

Some of the points for this assignment will be awarded on the basis of how much energy and creativity you put into defining

an interesting Husky class. These points allow us to reward the students who spend time writing an interesting critter definition.

Your Husky's behavior should not be trivial or closely match that of an existing animal shown in class. A single point of

extra credit will be awarded to exceptionally creative or impressive Husky implementations. Note that this point will be

awarded very sparingly, and that writing complex code or using advanced material is neither necessary nor sufficient to earn

this point.

Follow past style guidelines about indentation, spacing, identifiers, and localizing variables. Place comments at the beginning

of each class documenting that critter's behavior, as well as on the top of each method and on any complex code. Your critters

should not produce any console output. For reference, our Bear, Lion, and Giant together occupy just under 140 lines

including blank lines and comments (85 "substantive" lines, according to our Indenter tool).

The Husky is not graded on internal correctness at all. Its code does not need to be commented, can be redundant, and can

use advanced material, so long as it works properly and obeys the other constraints described previously.

