
CSE 142: Computer Programming I Winter 2020
Assignment 6: YazInterpreter (20 points) due February 25, 2020, 11:59pm
This assignment focuses on file input and output and string processing, as well as reinforcing previous
concepts such as loops, conditionals, and methods. Turn in the following TWO files using the link on the
course website:

• YazInterpreter.java – A program that interprets commands from the programming language
YazLang.

• my-command.txt – A proposal for a new YazLang command.

Background
Note: You do not need to read this section to complete the assignment, but it provides some helpful
context that may make the assignment easier to understand.

Throughout the quarter, we have been working with the programming language Java. Java is an example
of a compiled language, meaning that before we can run our code, we need to run it through a tool
called a compiler to translate it into a language that the computer itself can understand and execute. But
not all languages work this way. Some languages are what are called interpreted languages, meaning
that the source code in the language can be read and executed directly using a tool called an interpreter.
The language you will work with on this assignment, YazLang, is an example of an interpreted language.

In addition, code does not always need to be written in a file to be compiled or interpreted. Many languages
support what is known as a Read-Evaluate-Print Loop (REPL), which allows a single expression or
statement to be entered by the user and then evaluated. (The Interactions Pane in jGRASP is an example
of a REPL.) This provides a convenient way to experiment with or test short snippets of code without
having to write an entire program.

Program Behavior
In this assignment, you will create both a REPL and an interpreter for the programming language YazLang.
(This language was named after our CSE 142 Head TA, Ayaz, who led development of the language and
this assignment.) The REPL, known as YazInteractions, will read a single YazLang command from the
console, execute it, and print the result back to the console. The interpreter will read and execute an
entire YazLang program from a file and output the results to a different file.

Menu
The program should begin by printing a short introduction, and then prompt the user for one of three
options: start a YazInteractions console, interpret a YazLang program from a file, or quit. These opera-
tions are represented by C, I, and Q, respectively. If anything besides one of these three options (case-
insensitively) is entered, the user should be re-prompted.

The program’s menu should work properly regardless of the order in which the options are chosen or the
number of times each option is chosen. For example, the user should be able to run each command (C
or I) many times in a row, interpret a program without first running the console (or vice versa), quit
immediately after beginning the program, or choose any other combination of options.

Page 1 of 7

Sample Execution
Welcome to the YazInterpreter!
You may interpret a YazLang program and output
the results to a .txt file or enter console YazInteractions
mode to run single commands of YazLang.

(C)onsole YazInteractions, (I)nterpret .yzy program, (Q)uit? c
YazInteractions session. Type END to exit.
> CONVERT 3 C
37F
> RANGE 0 5 1
0 1 2 3 4
> REPEAT "cool_" 3
cool cool cool
> End

(C)onsole YazInteractions, (I)nterpret .yzy program, (Q)uit? c
YazInteractions session. Type END to exit.
> RANGE 5 10 2
5 7 9
> CONVERT 87 F
30C
> END

(C)onsole YazInteractions, (I)nterpret .yzy program, (Q)uit? interpret
(C)onsole YazInteractions, (I)nterpret .yzy program, (Q)uit? int
(C)onsole YazInteractions, (I)nterpret .yzy program, (Q)uit? I
Input file name: input.yzy
File not found. Try again: interpret.txt
File not found. Try again: interpret.yzy
Output file name: interpret-out.txt
YazLang program interpreted and output to .txt file!

(C)onsole YazInteractions, (I)nterpret .yzy program, (Q)uit? q

YazLang Commands
The syntax for YazLang is much simpler (and more limited) than Java’s. Every YazLang command follows
this pattern:

COMMAND arg1 arg2 ... argn

That is, every command consists of a single token indicating the command be executed, followed by some
number of arguments. Some commands take a specific number of arguments, while others may take any
number of arguments. Some commands may also take no arguments, in which case the command token
itself is considered a complete command. There will be one or more spaces or tabs between the command
and the arguments, and between each argument. In a YazLang program file, each command is on its own
line.

YazLang includes three commands: CONVERT, RANGE, and REPEAT. These commands are described in the
table on the next page.

Page 2 of 7

Com-
mand

Arguments Description Examples Example
Output

CONVERT Always takes exactly two
arguments:

• arg1: the tempera-
ture to convert, as an
integer.

• arg2: either C or F,
indicating the current
units of the tempera-
ture.

arg2 will always be either C
or F (case-insensitive).

Converts a temperature
from Celsius to Fahrenheit
or vice versa using the
following formulas:

F = 1.8 ∗ C + 32

C = (F − 32)/1.8

If the temperature is cur-
rently in Celsius (that is,
arg2 is C), it should be con-
verted to Fahrenheit. If the
temperature is currently in
Fahrenheit, it should be
converted to Celsius. The
output should be given as
an integer, with any deci-
mal places truncated, and
should indicate the new
units.

CONVERT 0 C
CONVERT 32 F
CONVERT 9 C
CONVERT 9 F

32F
0C
48F
-12C

RANGE Always takes exactly three
arguments:

• arg1: the first num-
ber to be printed.

• arg2: the first num-
ber to not be printed.

• arg3: the amount to
increment by.

arg3 will always be greater
than zero.

Prints a sequence of num-
bers starting from arg1 and
incrementing by arg3 until
a number greater than or
equal to arg2 is reached.
Does not print arg2 or any
number greater than it.

RANGE 0 5 1
RANGE 1 10 9
RANGE 2 1 1

0 1 2 3 4
1

REPEAT Takes an arbitrary number
of arguments, alternating
between strings and inte-
gers. The number of argu-
ments will always be even
(but might be zero). String
arguments will be enclosed
in quotation marks, and
may contain underscores.
Integer arguments will be
greater than or equal to
zero.

Prints out each string ar-
gument repeated the num-
ber of times indicated by
the following integer ar-
gument. The string ar-
guments should have the
outer quotation marks re-
moved and underscores re-
placed with spaces before
printing.

REPEAT "a" 5 "B" 2
REPEAT "yo_yo" 1 "_a" 1
REPEAT "a" 1 "b" 0 "c" 2
REPEAT

aaaaaBB
yo yo a
acc

Page 3 of 7

YazInteractions Console
When the user enters C from the menu, a YazInteractions console session should begin. The user should
be prompted to enter a single YazLang command, or the word END (case-insensitively). If the user enters
a command, the command should be executed and the output should be printed to the console. Then,
the user should be prompted for another command. If the user enters END, the YazInteractions session
should end and the user should be returned to the menu.

Interpreting YazLang Files
Sample Input File (interpret.yzy)

RANGE -9 9 3
CONVERT 4 C
REPEAT "gucci_gang" 7
CONVERT 53 F
REPEAT "humu" 2 "nuku" 2 "apua'a" 1
RANGE 5 35 7
CONVERT -4 C

When the user enters I from the menu, they should then be
prompted to enter an input file and an output file. The in-
put file should contain YazLang commands. Your program
should then read the input file, execute each command, and
print the output to the output file. If the input file does
not exist, the user should be reprompted until they enter
a file that does exist. See the Sample Execution above for
an example of this reprompting behavior.

No reprompting is necessary for the output file. If the output file does not exist, it should be created.
If it does already exist, its contents should be overridden. (These are the default behaviors for the file
input/output approaches we use.) You should assume that the input and output files are not the same.

Sample Output File (interpret-out.txt)
-9 -6 -3 0 3 6
39F
gucci ganggucci ganggucci ganggucci ganggucci ganggucci ganggucci gang
11C
humuhumunukunukuapua'a
5 12 19 26 33
24F

Creative Aspect (my-command.txt)
There are only three commands in YazLang at the moment, and to come up with more we have decided
to crowdsource! Along with your program, submit a file called my-command.txt with a proposal for a
new command to add to YazLang. Your proposal must include the following elements:

• The name of the command

• The arguments the command will take

• A description of what the command does

• At least one sample input and sample output

You should format your proposal like the example below. We have also posted examples on the course
website.

repeat-proposal.txt
REPEAT

REPEAT takes an arbitrary number of pairs of Strings and integers and
creates one large string with each string repeated the number of times
indicated by the following integer.

Input: REPEAT "ha" 3 "_" 1 "lol" 2
Output: "hahaha lollol"

Page 4 of 7

Development Strategy
To be able to use the Scanner and File classes in your code, you will need to include the following lines
of code at the beginning of your program (before your public class declaration):

import java.util.*;
import java.io.*;

Approach
Once again, this assignment will be best approached in smaller chunks. We recommend the following
strategy:

(1) Echo commands to the console: Implement the basic framework for the YazInteractions console,
but without executing commands. Instead, simply echo each command back to the console as its
own output.

�

In the final
version of the
program, you
should not echo
the command.(2) Execute commands on the console: Modify your code to be able to execute the YazLang

commands and print their results. Work on one command at a time, and test each one before
moving on to the next. We suggest working through the commands in the order they appear in the
table above.

(3) Echo commands from a file: Add code to read a YazLang command from an input file and echo
it to an output file.

(4) Execute commands from a file: Utilize the work you did in step 2 to execute commands read in
from an input file and output their results to an output file. Try to identify which parts of running
the YazInteractions console are similar to interpreting a YazLang input file; these parts can likely
be factored into a method.

�

The output
of a YazLang
command does
not depend
on whether it
comes from the
console or a
file.

(5) Menu/Reprompting: Add code to allow the user to select their mode (console, interpreter, quit)
and to handle reprompting for missing input files.

Hints
The following suggestions and hints may help you be more successful on this assignment:

• When reading input from a file, you may need to use a mixture of line-based and token-based
processing as shown in class and described in chapter 6 of the textbook.

• To check if a file exists, you should use methods from the File class. The textbook describes
an alternate technique for dealing with missing files using try/catch statements, but you should
NOT use this approach on this assignment.

• You may find the startsWith method of the String class useful for determining which type of
command you are processing.

• You may also find the replace method of the String class useful for replacing occurrences of one
character with another. For example, the code:

String str = "mississippi";
str = str.replace("s", "*");

will result in the string str containing the value "mi**i**ippi.

• If your program is generating InputMismatchException errors, you are likely reading the wrong
type of values from your Scanner (for example, using nextInt to read a string).

• If your program is generating NoSuchElementException errors, you are likely attempting to read
past the end of a file or line.

Page 5 of 7

Debugging Tips
You may want to initially "hard-code" the input and output filenames; in other words, you may want to
just use fixed file names in your code rather than prompting the user to enter the file names. You may
also want to temporarily print extra "debug" text to the console while developing your program, such as
printing each command or argument as you read it. Be sure to remove this extra output before submitting
your program.

It is easier to debug this problem using a smaller input file with fewer commands and arguments. The
file simple.yzy on the course website has a short YazLang program that will be useful for testing your
program at first.

Implementation Guidelines
User Input/File Input
All console input should be processed using a Scanner and should be read using the nextLine method.
All file input should be processed using a File object and a Scanner as shown in class. File output
should be performed using a File and a PrintStream as shown in class.

You may assume anytime a YazLang command is expected, it will be valid. Specifically, you may assume
that:

• each command will be on its own line

• the first word on each line will be a valid YazLang command (CONVERT, RANGE, or REPEAT)

• each command will have an appropriate number of arguments

• all arguments will be of the correct type and will meet the requirements outlined above

Permitted Java Features
For this assignment, you are restricted to Java concepts covered in chapters 1 through 6 of the textbook.
In particular, you ARE NOT allowed to use arrays on this assignment.

Style Guidelines
You should follow all guidelines in the Style Guide and on the General Style Deductions page of the course
website. Pay particular attention to the following elements:

Capturing Structure
Your main method in this program may have more code than it has in previous assignments. In particular,
you may include a limited amount of output and some control flow constructs (e.g. a loop to drive the
menu) in main. However, your main method must remain a concise summary of your program’s structure,
and you must still utilize methods to both capture structure and eliminate redundancy.

Each method should perform a single, coherent task, and no method should do too much work. To
receive full credit, your program must include a separate method to execute each type of command, plus
four (4) other non-trivial method besides main. (Therefore, your program should have a total of at least
seven (7) non-trivial methods.)

�

Your program
must include a
single method
to process each
type of YazLang
command.Using Parameters and Returns

Your program should utilize parameters and return values effectively to produce a well-structured program
as described above. Your methods should not accept unnecessary or redundant parameters. In particular,
your program should include only a single Scanner connected to System.in, though you may have
additional Scanners as well. You can (and probably should) use objects (such as Scanner, File, or
PrintStream) as parameters and/or return values.

Page 6 of 7

https://courses.cs.washington.edu/courses/cse142/20wi/homework/style2.pdf
https://courses.cs.washington.edu/courses/cse142/20wi/homework/style.shtml

Code Aesthetics
Your code should be properly indented, make good use of blank lines and other whitespace, and in-
clude no lines longer than 100 characters. Your class, methods, and variables should all have mean-
ingful and descriptive names and follow the standard Java naming conventions. (e.g. ClassName,
methodOrVariableName). See the Style Guide for more information.

Commenting
Your code should include a header comment at the start of your program, following the same format
described in previous assignments. Your code should also include a comment at the beginning of each
method that describes that method’s behavior and any parameters or return value. You should also
include inline comments for any complex or confusing code to further explain what that code is doing.
Comments should be written in your own words (i.e. not copied and pasted from this spec) and header
comments should not include implementation details. See the Style Guide for examples.

Getting Help
If you find you are struggling with this assignment, make use of all the course resources that are available
to you, such as:

• Reviewing relevant lecture examples

• Reviewing this week’s section handouts

• Reading the textbook

• Visiting the IPL

• Posting a question on the message board

Academic Integrity
Remember that, while you are encouraged to use all resources at your disposal, including your classmates,
all work you submit must be entirely your own. In particular, you should NEVER look at a solution
to this assignment from another source (a classmate, a former student, an online repository, etc.). Please
review the full policy in the syllabus for more details, and ask the course staff if you are unclear on whether
or not a resource is OK to use.

Page 7 of 7

https://courses.cs.washington.edu/courses/cse142/20wi/homework/style2.pdf
https://courses.cs.washington.edu/courses/cse142/20wi/homework/style2.pdf
https://courses.cs.washington.edu/courses/cse142/20wi/calendar.shtml
https://courses.cs.washington.edu/courses/cse142/20wi/message_board.shtml

