
CSE 142: Computer Programming I Winter 2020
Assignment 5: Guessing Game (20 points) due February 11, 2020, 11:59pm
This assignment focuses on while loops and random numbers. Turn in the following Java file using the
link on the course website:

• GuessingGame.java – A program that plays a guessing game with the user as described below
Sample Output #1

<< Your custom haiku goes here >>

I'm thinking of a number between 1 and 100...
Your guess? 50
It's lower.
Your guess? 25
It's higher.
Your guess? 35
It's lower.
Your guess? 30
It's higher.
Your guess? 32
It's lower.
Your guess? 31
You got it right in 6 guesses!
Do you want to play again? y

I'm thinking of a number between 1 and 100...
Your guess? 50
It's higher.
Your guess? 75
It's lower.
Your guess? 65
It's lower.
Your guess? 64
You got it right in 4 guesses!
Do you want to play again? YES

I'm thinking of a number between 1 and 100...
Your guess? 60
It's lower.
Your guess? 20
It's higher.
Your guess? 30
It's higher.
Your guess? 40
It's higher.
Your guess? 50
It's lower.
Your guess? 47
It's higher.
Your guess? 49
You got it right in 7 guesses!
Do you want to play again? no

Overall results:
Total games = 3
Total guesses = 17
Guesses/game = 5.7
Best game = 4

Program Behavior

�

Make sure that
the format and
structure of
your output
exactly match
the given logs.

This program allows the user to play a game in
which the program thinks of a random integer
and accepts guesses from the user until the user
guesses the number correctly. After each incor-
rect guess, the program will tell the user whether
the correct answer is higher or lower. As in as-
signment 4, this program’s behavior is dependent
on input from a user (user input is bold and un-
derlined below), but this program also includes
random values. The format and structure of your
output should exactly match the given logs, but
the specific output may vary based on random-
ness and/or user input. You can also use random
seeds (see below) to control the randomness and
test your output using the Output Comparison
Tool.

The program should begin with an introduction
in the form of a haiku. A haiku is a poem con-
sisting of three lines in a specific structure: the
first line has five syllables, the second line has
seven syllables, and the third line has five syl-
lables. The content of the haiku can be any
non-offensive text you like, but should somehow
relate to the game.

After the introduction is printed, the game be-
gins. In each game, the computer should choose
a secret random integer between 1 and a maxi-
mum, inclusive. (The default maximum is 100.)
The game should ask the user to guess a number
until the chosen secret number is guessed. After
each incorrect guess, the program should indi-
cate whether the secret number is higher or lower
than the guess. Once the user enters the correct
number, the game ends and the program should
report how many guesses were needed. This out-
put should be grammatically correct– that is, it
should print "1 guess" if the user guessed cor-
rectly on the first try, but use the word "guesses"
if more than one try was required. The second
game in Example Output #2 on the next page
shows what this should look like.

�

The guess that
was correct
counts in the
number of
guesses.

Page 1 of 5

https://courses.cs.washington.edu/courses/cse142/20wi/diff.html#a5
https://courses.cs.washington.edu/courses/cse142/20wi/diff.html#a5


After each game ends and the number of guesses is shown, the program should ask the user if they would
like to play again. If the user’s response starts with a lower- or upper-case Y (e.g. y, Y, yes, YES, Yup,
yessir, yeehaw), a new game should begin. If the user gives any other response (e.g. no, No, okay, 0,
certainly, hello), no new game should begin.

�

A new secret
number should
be chosen for
each game.

Once the user chooses not to play again, the program should print overall statistics about all games
played. Specifically, the total number of games, total guesses made in all games, average number of
guesses per game (rounded to the nearest tenth), and best game (i.e. fewest guesses needed to win any
one game) should be displayed. Your statistics must be correct for any number of games or guesses ≥ 1.
You may assume that no game will require one million or more guesses.

�

You should not
assume that the
user plays the
game optimally,
or that they use
any particular
strategy. For
example, a user
may enter the
same guess
more than once.

Sample Output #2
<< Your custom haiku goes here >>

I'm thinking of a number between 1 and 100...
Your guess? 50
It's higher.
Your guess? 75
It's lower.
Your guess? 60
It's higher.
Your guess? 65
It's lower.
Your guess? 62
You got it right in 5 guesses!
Do you want to play again? yEs!

I'm thinking of a number between 1 and 100...
Your guess? 28
You got it right in 1 guess!
Do you want to play again? YAY

I'm thinking of a number between 1 and 100...
Your guess? 50
It's higher.
Your guess? 75
It's lower.
Your guess? 60
It's lower.
Your guess? 55
It's higher.
Your guess? 58
You got it right in 5 guesses!
Do you want to play again? nah

Overall results:
Total games = 3
Total guesses = 11
Guesses/game = 3.7
Best game = 1

Development Strategy
To be able to use the Scanner and Random
classes in your code, you will need to include
the following line of code at the beginning of
your program (before your public class dec-
laration):

import java.util.*;

Approach
As on assignment 4, you will likely want to ap-
proach the program one part at a time, rather
than trying to write most or all of the program
at once. We recommend the following approach:

(1) Single game: Write and thoroughly test
a method to play a single game with num-
bers between 1 and 100.

(2) Constant: Modify your code to use a con-
stant (see below) to be able to change the
maximum possible secret number.

(3) Multiple games: Add code play ask the
user whether or not they want to play
again and respond accordingly.

(4) Statistics: Add code to track and out-
put the overall statistics across multiple
games.

Debugging Tips
While testing your program, you may want to
add code to print the secret number before the
game begins. This will allow you to more easily
test that the higher/lower messages and statis-
tics are correct. You may also want to add addi-

tional output to display the state of certain values (e.g. number of guesses, current statistics) at relevant
points in the program.

�

Remember to
remove any
debugging
output before
submitting.

Page 2 of 5



If you wish to control the randomness to more reliably test your program and exactly match our sample
logs, you can seed your Random object by passing a parameter to the constructor, similar to the following:

Random rand = new Random(42);
Each sample log in the Output Comparison Tool indicates the seed that was used to produce that log.
For more information on seeding, see the Assignment 5 FAQ.

Hints
The following suggestions and hints may help you be more successful on this assignment:

• You will likely want to use while loops to control the repetition in your program. Remember that
while loops are best for indefinite loops when you do not know how many times the loop will
execute.

• You MUST NOT define a method that calls itself, or a pair of methods that call each other, to
achieve repetition. This approach (called recursion) is difficult to get right and is not allowed in
CSE 142.

• You may find it useful to review fencepost loops and sentinel loops in section 5.2 of the textbook.

• If your program is generating InputMismatchException errors, you are likely reading the wrong
type of values from your Scanner (for example, using nextInt to read text).

• As on assignment 4, you will need to round certain parts of your output. You should round only for
output purposes, not during any calculations. You may round using either a round method (such
as the one shown in lecture) or System.out.printf.

• Output that needs to be aligned (such as the equals signs in the statistics) should be aligned using
spaces, NOT tabs (\t). Tabs can have different widths on different computers, and might result
in incorrect output on our grading system.

Sample Single Game
I'm thinking of a number between 1 and 100...
Your guess? 50
It's lower.
Your guess? 25
It's higher.
Your guess? 48
It's lower.
Your guess? 46
You got it right in 4 guesses!

Implementation Guidelines
Required Methods

�

These methods
may be called
by other meth-
ods which do
more work, but
they must per-
form only the
specified tasks.

To recieve full credit, your program is required
to include the following methods:

(1) A method to play a single game

(2) A method to report all overall statistics

Each of these methods must perform only the
tasks indicated. Specifically, your single game

method (1) must not play multiple games or ask the user to play again; and your statistics method (2)
must not play any games or take any input. (See the sample output above for what playing a single game
might look like.) You may (and likely will) have additional methods beyond these two.

User Input
This program requires you to process user input, which you must do using a Scanner. All text input
should be read using the next method in the Scanner class, not the nextLine method.

You may assume the user always enters valid input. Specifically, you may assume that:

• the user will always enter a value of the correct type

Page 3 of 5

https://courses.cs.washington.edu/courses/cse142/20wi/homework/5/faq.shtml


• the user will always enter a single word when asked to play again

• all guesses will be integers in the expected range (i.e. at least 1 and no more than the current
maximum)

�

You should
NOT make any
assumptions
about input not
specified here.

Class Constant
The minimum possible secret number for a game will always be 1, but the maximum value should be
declared as a constant. The default maximum will be 100, but this value should be able to be easily
changed. Sample Output #3 below shows a sample execution with the a maximum secret number of 5.
See the course website and the Output Comparison Tool for additional example logs with alternate values
for the constant.

Permitted Java Features
For this assignment, you are restricted to Java concepts covered in chapters 1 through 5 of the textbook.
In particular, you MUST use the Scanner class to accept user input and the Random class to generate
random numbers.

Sample Output #3, constant = 5
<< Your custom haiku goes here >>

I'm thinking of a number between 1 and 5...
Your guess? 2
It's higher.
Your guess? 4
It's lower.
Your guess? 3
You got it right in 3 guesses!
Do you want to play again? yuppers

I'm thinking of a number between 1 and 5...
Your guess? 3
It's higher.
Your guess? 5
You got it right in 2 guesses!
Do you want to play again? Nah

Overall results:
Total games = 2
Total guesses = 5
Guesses/game = 2.5
Best game = 2

Style Guidelines
You should follow all guidelines in the Style Guide
and on the General Style Deductions page of the
course website. Pay particular attention to the fol-
lowing elements:

Capturing Structure
Your main method in this program may have more
code than it has in previous assignments. In par-
ticular, you may include a limited amount of out-
put and some control flow constructs (e.g. a loop
to play multiple games) in main. However, your
main method must remain a concise summary of
your program’s structure, and you must still utilize
methods to both capture structure and eliminate
redundancy.

Using Parameters and Returns
Your program should utilize parameters and return
values effectively to produce a well-structured pro-
gram as described above. Your methods should
not accept unnecessary or redundant parameters.

In particular, your program should include only a single Scanner and a single Random which are passed
as parameters to all required methods. You should NOT declare either of these objects as a constant.

Code Aesthetics
Your code should be properly indented, make good use of blank lines and other whitespace, and in-
clude no lines longer than 100 characters. Your class, methods, variables, and constant should all have
meaningful and descriptive names and follow the standard Java naming conventions. (e.g. ClassName,
methodOrVariableName, CONSTANT_NAME). See the Style Guide for more information.

Page 4 of 5

https://courses.cs.washington.edu/courses/cse142/20wi/homework.shtml#a5
https://courses.cs.washington.edu/courses/cse142/20wi/diff.html#a5
https://courses.cs.washington.edu/courses/cse142/20wi/homework/style2.pdf
https://courses.cs.washington.edu/courses/cse142/20wi/homework/style.shtml
https://courses.cs.washington.edu/courses/cse142/20wi/homework/style2.pdf


Commenting
Your code should include a header comment at the start of your program, following the same format
described in previous assignments. Your code should also include a comment at the beginning of each
method that describes that method’s behavior and any parameters or return value. You should also
include inline comments for any complex or confusing code to further explain what that code is doing.
Comments should be written in your own words (i.e. not copied and pasted from this spec) and header
comments should not include implementation details. See the Style Guide for examples.

Getting Help
If you find you are struggling with this assignment, make use of all the course resources that are available
to you, such as:

• Reviewing relevant lecture examples

• Reviewing this week’s section handouts

• Reading the textbook

• Visiting the IPL

• Posting a question on the message board

Academic Integrity
Remember that, while you are encouraged to use all resources at your disposal, including your classmates,
all work you submit must be entirely your own. In particular, you should NEVER look at a solution
to this assignment from another source (a classmate, a former student, an online repository, etc.). Please
review the full policy in the syllabus for more details, and ask the course staff if you are unclear on whether
or not a resource is OK to use.

Page 5 of 5

https://courses.cs.washington.edu/courses/cse142/20wi/homework/style2.pdf
https://courses.cs.washington.edu/courses/cse142/20wi/calendar.shtml
https://courses.cs.washington.edu/courses/cse142/20wi/message_board.shtml

