
CSE 142: Computer Programming I Winter 2020
Assignment 3: Café Wall (20 points) due January 28, 2020, 11:59pm
This assignment focuses on for loops, parameters, and graphics. Turn in the following TWO Java files
using the link on the course website:

• Doodle.java – A program that produces your custom image

• CafeWall.java – A program that produces the Café Wall illusion described below

Program Behavior
Part A: Doodle (2 points)
The first part of your assignment is to write a program that uses DrawingPanel to produce an image of
your choice. Your program can produce any image you like, with the following restrictions:

• The image should not include hateful, offensive, or otherwise inappropriate images.

• The image must be at least 100×100 pixels.

• The image must contain at least three distinct shapes and at least two distinct colors. (Note that
shapes need not be unique; for example, three separate rectangles count as three distinct shapes.)

• The image must not be substantially similar to your solution for Part B, consist entirely of reused
Part B code, or be substantially similar to a related CSE 142 assignments from a previous quarter.

• The code must successfully compile and run, and must not enter an infinite loop.

• The code must not use material beyond Supplement 3G of the textbook.

If your program compiles, runs, and meets all of the above requirements, you will receive the full 2 points.

Part B: Café Wall (18 points)
The second part of your assignment is to produce an image that demonstrates what is known as the Café
Wall illusion. Your program should produce the following image:

Page 1 of 5

http://en.wikipedia.org/wiki/Caf%C3%A9_wall_illusion
http://en.wikipedia.org/wiki/Caf%C3%A9_wall_illusion


This image is drawn on a 650×400 pixel DrawingPanel with a Color.GRAY background. The image
consists of four grids made up of rows, along with two stand-alone rows. Each row consists of pairs of
black and white boxes, with a blue ’X’ drawn over each black box. Each grid consists of pairs of rows,
with the second row in each pair offset to the right by a certain number of pixels (potentially zero). Each
grid is also a square; that is, the number of row pairs in the grid is equal to the number of box pairs in
each row of that grid.

The overall image consists of six components (two stand-alone rows and four grids). Thse components
are labeled in the image below. The properties of each component are as follows:

Rows
Label Position Box Pairs Box Size

A (upper left) (0, 0) 4 20
B (middle left) (50, 70) 5 30

Grids
Label Position Row Pairs Box Size Offset

C (upper right) (400, 20) 2 35 35
D (lower left) (10, 150) 4 25 0

E (lower middle) (250, 200) 3 25 10
F (lower right) (425, 180) 5 20 10

�

Since each grid
is a square,
the number of
row pairs is the
same as the
number of box
pairs.

The second row in each pair within a grid is offset to the right by a specified amount. For example, in
grid D (the lower left), the offset is zero, so the rows are perfectly aligned. In grid C (the upper right),
the offset is the same as the size of each box, giving a "checkerboard"-like appearance.

In each grid, the rows are separated vertically by a small amount, allowing the gray background to show.
(This separation is what triggers the illusion.) We will refer to this separation as "mortar." By default,

Page 2 of 5



your image should use 2 pixels of mortar. However, we should be able to change the size of the mortar
by changing a single value and recompiling your program. See below for more details.

�

The mortar is a
space between
the rows, not
a separate
component you
need to draw.There will not be an Output Comparison Tool for this assignment. Instead, you can use the "Compare

to Web File" feature of DrawingPanel (found in the File menu) to check your output. This feature will
show you the number of pixels that are different between your output and the expected output, and will
allow you to highlight the specific pixels that differ. Different operating systems draw shapes in slightly
different ways, so it is possible to have some pixels different between your output and the expected output
even if your code is correct. However, there is no specific minimum or maximum number of pixels of
difference that will be considered acceptable. If there are no visible differences to the naked eye, your
output will most likely be considered correct.

�

Look carefully
for differences,
and utilize
the "Highlight
diffs" feature to
make sure there
are no major
differences.

Development Strategy
To complete this assignment, you will need to download the file DrawingPanel.java from the course
website. Save this file in the same folder as your programs. You will also need to include the following
line of code at the beginning of each of your programs (before your public class declaration):

import java.awt.*;

As on Assignment 2, we recommend you approach the program in stages, as follows:
(1) Single row: Write a method to produce a single row of black and white boxes.

(2) Parameterized rows: Modify your row method to be able to produce a row with any number of
box pairs of any size.

(3) Single grid: Once your row method completely works, write a method that produces a single grid
by calling your row method.

(4) Parameterized grids: Modify your grid method to be able to produce a grid with any number of
row pairs of any size boxes and with any offset.

(5) Mortar: Once you are able to produce any grid, add your constant (see below) so the size of the
mortar can be changed.

�

You do not
need to worry
about produc-
ing rows with
an odd number
of boxes, grids
with an odd
number of rows,
or rectangular
grids.

Implementation Guidelines
Like all CSE 142 assignments, Part B of this assignment will be graded both on "external correctness"
(whether the program compiles and produces exactly the expected output) and "internal correctness"
(whether your source code follows the implementation and style guidelines in this document). You will
need to adhere to the following guidelines to receive full credit on part B. (Part A of this assignment is
graded only on the requirements stated above; it is not graded on internal correctness.)

Required methods/structure
For this assignment, your program is required to utilize the following structure:

�

Your program
must have at
least these
two meth-
ods, though
you may have
more. Your grid
method must
call your row
method.

(1) Your program must include a method to draw a single row at a time. This method should use
parameters so that it can produce any of the required rows in the final image.

(2) Your program must also include a single method to draw a grid, which must be acheived by calling
the row method described in (1).

Both your row method and your grid method should make use of for loops to produce each grid/row
from its component rows/boxes.

Page 3 of 5

https://courses.cs.washington.edu/courses/cse142/20wi/homework.shtml#a3
https://courses.cs.washington.edu/courses/cse142/20wi/homework.shtml#a3


Changing mortar with a class constant
As described above, your program should be able to be easily changed to alter the mortar size. To achieve
this, your program should include one (and only one) class constant that represents the size of the mortar.
(The default mortar size is 2.) The size of the mortar should be able to be altered by changing only the
value of the constant.

The course web site will contain files that show you the expected output if your mortar constant is
changed to 1 instead of 2. You can use the "Compare to Web File" feature of DrawingPanel to check
your output.

Permitted Java Features
For this assignment, you are restricted to Java concepts covered in chapters 1 through 3 and supplement
3G of the textbook. In particular, you MUST use for loops and parameters, and you may not use if or
if-else statements.

Style Guidelines
You should follow all guidelines in the Style Guide and on the General Style Deductions page of the course
website. Pay particular attention to the following elements:

Capturing Structure
Your program must use the method structure described above, though you may include additional methods
if you like. As always, your main method should be a concise summary of the program.

Using Parameters
Your program should utilize parameters to define generalized methods that can be used to create var-
ious similar results. In addition, your methods should not accept any unncessary parameters. For this
assignment, a parameter is considered unncessary if its value is unused, is always the same as the value
as another parameter, or can be directly computed from the values of other parameters.

Code Aesthetics
Your code should be properly indented, make good use of blank lines and other whitespace, and in-
clude no lines longer than 100 characters. Your class, methods, variables, and constant should all have
meaningful and descriptive names and follow the standard Java naming conventions. (e.g. ClassName,
methodOrVariableName, CONSTANT_NAME) See the Style Guide for more information.

Commenting
Your code should include a header comment at the start of your program, following the same format
described in Assignments 1 and 2. Your code should also include a comment at the beginning of each
method that describes that method’s behavior. Comments should be written in your own words (i.e. not
copied and pasted from this spec) and should not include implementation details (such as describing loops
or expressions included in the code). See the Style Guide or lecture code for examples.

Getting Help
If you find you are struggling with this assignment, make use of all the course resources that are available
to you, such as:

• Reviewing relevant lecture examples

• Reviewing this week’s section handouts

• Reading the textbook

Page 4 of 5

https://courses.cs.washington.edu/courses/cse142/20wi/homework/style2.pdf
https://courses.cs.washington.edu/courses/cse142/20wi/homework/style.shtml
https://courses.cs.washington.edu/courses/cse142/20wi/homework/style2.pdf
https://courses.cs.washington.edu/courses/cse142/20wi/homework/style2.pdf
https://courses.cs.washington.edu/courses/cse142/20wi/calendar.shtml


• Visiting the IPL

• Posting a question on the message board

Academic Integrity
Remember that, while you are encouraged to use all resources at your disposal, including your classmates,
all work you submit must be entirely your own. In particular, you should NEVER look at a solution
to this assignment from another source (a classmate, a former student, an online repository, etc.). Please
review the full policy in the syllabus for more details, and ask the course staff if you are unclear on whether
or not a resource is OK to use.

Page 5 of 5

https://courses.cs.washington.edu/courses/cse142/20wi/message_board.shtml

