
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 8
Lecture 8-2: Constructors and Encapsulation

reading: 8.3 - 8.4

Copyright 2008 by Pearson Education
2

Object initialization:
constructors

reading: 8.4

self-check: #10-12
exercises: #9, 11, 14, 16

Copyright 2008 by Pearson Education
3

Initializing objects
� Currently it takes 3 lines to create a Point and initialize it:

Point p = new Point();
p.x = 3;
p.y = 8; // tedious

� We'd rather pass the fields' initial values as parameters:
Point p = new Point(3, 8); // better!

� We are able to this with most types of objects in Java.

Copyright 2008 by Pearson Education
4

Constructors
� constructor: Initializes the state of new objects.

public type(parameters) {
statements;

}

� runs when the client uses the new keyword
� does not specify a return type;

it implicitly returns the new object being created

� If a class has no constructor, Java gives it a default constructor
with no parameters that sets all fields to 0.

Copyright 2008 by Pearson Education
5

Constructor example
public class Point {

int x;
int y;

// Constructs a Point at the given x/y location.
public Point(int initialX, int initialY) {

x = initialX;
y = initialY;

}

public void translate(int dx, int dy) {
x += dx;
y += dy;

}
}

Copyright 2008 by Pearson Education
6

Tracing a constructor call
� What happens when the following call is made?

Point p1 = new Point(7, 2);

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public void translate(int dx, int dy) {
x += dx;
y += dy;

}

x yp1

Copyright 2008 by Pearson Education
7

Client code, version 3
public class PointMain3 {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point(5, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.println("p1: (" + p1.x + ", " + p1.y + ")");
System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

// move p2 and then print it again
p2.translate(2, 4);
System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

}
}

OUTPUT:
p1: (5, 2)
p2: (4, 3)
p2: (6, 7)

Copyright 2008 by Pearson Education
8

Common constructor bugs
� Accidentally writing a return type such as void:

public void Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

� This is not a constructor at all, but a method!

� Storing into local variables instead of fields ("shadowing"):
public Point(int initialX, int initialY) {

int x = initialX;
int y = initialY;

}

� This declares local variables with the same name as the fields,
rather than storing values into the fields. The fields remain 0.

Copyright 2008 by Pearson Education
9

Multiple constructors
� A class can have multiple constructors.

� Each one must accept a unique set of parameters.

� Write a constructor for Point objects that accepts no
parameters and initializes the point to the origin, (0, 0).

// Constructs a new point at (0, 0).
public Point() {

x = 0;
y = 0;

}

Copyright 2008 by Pearson Education

!10

Encapsulation

reading: 8.5 - 8.6
self-check: #13-17

exercises: #5

Copyright 2008 by Pearson Education
11

Encapsulation
� encapsulation: Hiding implementation details of an

object from its clients.

� Encapsulation provides abstraction.
� separates external view (behavior) from internal view (state)

� Encapsulation protects the integrity of an object's data.

Copyright 2008 by Pearson Education
12

Private fields
� A field can be declared private.

� No code outside the class can access or change it.

private type name;

� Examples:

private int id;
private String name;

� Client code sees an error when accessing private fields:
PointMain.java:11: x has private access in Point
System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");

^

Copyright 2008 by Pearson Education
13

Accessing private state
� We can provide methods to get and/or set a field's value:

// A "read-only" access to the x field ("accessor")
public int getX() {

return x;
}

// Allows clients to change the x field ("mutator")
public void setX(int newX) {

x = newX;
}

� Client code will look more like this:

System.out.println("p1: (" + p1.getX() + ", " + p1.getY() + ")");
p1.setX(14);

Copyright 2008 by Pearson Education
14

Point class, version 4
// A Point object represents an (x, y) location.
public class Point {

private int x;
private int y;

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public double distanceFromOrigin() {
return Math.sqrt(x * x + y * y);

}

public int getX() {
return x;

}

public int getY() {
return y;

}

public void setLocation(int newX, int newY) {
x = newX;
y = newY;

}

public void translate(int dx, int dy) {
x = x + dx;
y = y + dy;

}
}

Copyright 2008 by Pearson Education
15

Client code, version 4
public class PointMain4 {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point(5, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.println("p1: (" + p1.getX() + ", " + p1.getY() + ")");
System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")");

// move p2 and then print it again
p2.translate(2, 4);
System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")");

}
}

OUTPUT:
p1 is (5, 2)
p2 is (4, 3)
p2 is (6, 7)

Copyright 2008 by Pearson Education
16

Benefits of encapsulation
� Provides abstraction between an object and its clients.

� Protects an object from unwanted access by clients.
� A bank app forbids a client to change an Account's balance.

� Allows you to change the class implementation.
� Point could be rewritten to use polar coordinates

(radius r, angle θ), but with the same methods.

� Allows you to constrain objects' state (invariants).
� Example: Only allow Points with non-negative coordinates.

