
CSE 142: Computer Programming I Summer 2020
Assignment 6: YazInterpreter (20 points) due August 4, 2020, 11:59pm
This assignment focuses on file input and output and string processing, as well as reinforcing previous
concepts such as loops, conditionals, and methods. Turn in the following TWO files using the link on the
course website:

• YazInterpreter.java – A program that interprets commands from the programming language
YazLang.

• my-command.txt – A proposal for a new YazLang command.

Background
Note: You do not need to read this section to complete the assignment, but it provides some helpful
context that may make the assignment easier to understand.

Throughout the quarter, we have been working with the programming language Java. Java is an example
of a compiled language, meaning that before we can run our code, we need to run it through a tool
called a compiler to translate it into a language that the computer itself can understand and execute. But
not all languages work this way. Some languages are what are called interpreted languages, meaning
that the source code in the language can be read and executed directly using a tool called an interpreter.
The language you will work with on this assignment, YazLang, is an example of an interpreted language.

Program Behavior
In this assignment, you will create an interpreter for the programming language YazLang. (This language
was named the current CSE 142 Summer Instructor, Ayaz, who led development of the language and this
assignment.) When interpretting a YazLang file, the program prompts the user for input and output file
names. Then the program reads and executes the YazLang commmands in the input file and outputs the
results to a different file. The user can later view the output file that was created or quit the program.

Sample Execution
Welcome to YazInterpreter!
You may interpret a YazLang program and output
the results to a file or view a previously
interpreted YazLang program.

(I)nterpret .yzy program, (V)iew .yzy output, (Q)uit? I
Input file name: input.yzy
File not found. Try again: interpret.txt
File not found. Try again: interpret.yzy
Output file name: interpret-out.txt
YazLang interpreted and output to a file!

(I)nterpret .yzy program, (V)iew .yzy output, (Q)uit? View
(I)nterpret .yzy program, (V)iew .yzy output, (Q)uit? vi
(I)nterpret .yzy program, (V)iew .yzy output, (Q)uit? v
Input file name: interpret-out.txt

-9 -6 -3 0 3 6
39F
gucci ganggucci ganggucci ganggucci ganggucci ganggucci ganggucci gang
11C
humuhumunukunukuapua'a
5 12 19 26 33
24F

(I)nterpret .yzy program, (V)iew .yzy output, (Q)uit? q

Page 1 of 7

Menu
The program’s menu should work properly regardless of the order or number of times its commands are
chosen. For example, the user should be able to run each command (such as I or V) many times if so
desired.

The user should also be able to run the program again later and choose the V option without first choosing
the I option on that run. The user should be able to run the program and immediately quit with the Q
option if so desired. And so on.

Interpreting YazLang Files
Sample Input File (interpret.yzy)

RANGE -9 9 3
CONVERT 4 C
REPEAT "gucci_gang" 7
CONVERT 53 F
REPEAT "humu" 2 "nuku" 2 "apua'a" 1
RANGE 5 35 7
CONVERT -4 C

When the user enters I from the menu, they should then be
prompted to enter an input file and an output file. The in-
put file should contain YazLang commands. Your program
should then read the input file, execute each command, and
print the output to the output file. If the input file does
not exist, the user should be reprompted until they enter
a file that does exist. See the Sample Execution above for
an example of this reprompting behavior.

No reprompting is necessary for the output file. If the output file does not exist, it should be created.
If it does already exist, its contents should be overridden. (These are the default behaviors for the file
input/output approaches we use.) You should assume that the input and output files are not the same.

Sample Output File (interpret-out.txt)
-9 -6 -3 0 3 6
39F
gucci ganggucci ganggucci ganggucci ganggucci ganggucci ganggucci gang
11C
humuhumunukunukuapua'a
5 12 19 26 33
24F

Viewing YazLang Files
When the user enters V from the menu, they should then be prompted to enter an input file to view an
interpretted YazLang program. If the input file does not exist, the user should be reprompted until they
enter a file that does exist. See Output Comparison Tool for examples of this reprompting behavior.

When you are viewing an interpretted YazLang program, you are simply reading and echoing its contents
to the console. You do not need to do any kind of testing to make sure that it is a YazLang interpretted
file; just output the file’s contents.

YazLang Commands
The syntax for YazLang is much simpler (and more limited) than Java’s. Every YazLang command follows
this pattern:

COMMAND arg1 arg2 ... argn

That is, every command consists of a single token indicating the command be executed, followed by some
number of arguments. Some commands take a specific number of arguments, while others may take any
number of arguments. Some commands may also take no arguments, in which case the command token
itself is considered a complete command. There will be one or more spaces or tabs between the command
and the arguments, and between each argument. In a YazLang program file, each command is on its own
line.

�

The three com-
mands will
always ap-
pear exactly
as CONVERT,
RANGE and
REPEAT (case
sensitive) with
the appropriate
arguments

YazLang includes three commands: CONVERT, RANGE, and REPEAT. These commands are described in the
table on the next page.

Page 2 of 7

Com-
mand

Arguments Description Examples Example
Output

CONVERT Always takes exactly two
arguments:

• arg1: the tempera-
ture to convert, as an
integer.

• arg2: either C or F,
indicating the current
units of the tempera-
ture.

arg2 will always be either C
or F (case-insensitive).

Converts a temperature
from Celsius to Fahrenheit
or vice versa using the
following formulas:

F = 1.8 ∗ C + 32

C = (F − 32)/1.8

If the temperature is cur-
rently in Celsius (that is,
arg2 is C), it should be con-
verted to Fahrenheit. If the
temperature is currently in
Fahrenheit, it should be
converted to Celsius. The
output should be given as
an integer, with any deci-
mal places truncated, and
should indicate the new
units.

CONVERT 0 C
CONVERT 32 F
CONVERT 9 C
CONVERT 9 F

32F
0C
48F
-12C

RANGE Always takes exactly three
arguments:

• arg1: the first num-
ber to be printed.

• arg2: the first num-
ber to not be printed.

• arg3: the amount to
increment by.

arg3 will always be greater
than zero.

Prints a sequence of num-
bers starting from arg1 and
incrementing by arg3 until
a number greater than or
equal to arg2 is reached.
Does not print arg2 or any
number greater than it.

RANGE 0 5 1
RANGE 1 10 9
RANGE 2 1 1

0 1 2 3 4
1

REPEAT Takes an arbitrary number
of arguments, alternating
between strings and inte-
gers. The number of argu-
ments will always be even
(but might be zero). String
arguments will be enclosed
in quotation marks, and
may contain underscores.
Integer arguments will be
greater than or equal to
zero.

Prints out each string ar-
gument repeated the num-
ber of times indicated by
the following integer ar-
gument. The string ar-
guments should have the
outer quotation marks re-
moved and underscores re-
placed with spaces before
printing.

REPEAT "a" 5 "B" 2
REPEAT "yo_yo" 1 "_a" 1
REPEAT "a" 1 "b" 0 "c" 2
REPEAT

aaaaaBB
yo yo a
acc

Page 3 of 7

Creative Aspect (my-command.txt)
There are only three commands in YazLang at the moment, and to come up with more we have decided
to crowdsource! Along with your program, submit a file called my-command.txt with a proposal for a
new command to add to YazLang. Your proposal must include the following elements:

• The name of the command

• The arguments the command will take

• A description of what the command does

• At least one sample input and sample output

You should format your proposal like the example below. We have also posted examples on the course
website. You do not need to provide an implementation for your custom command.

repeat-proposal.txt
REPEAT

REPEAT takes an arbitrary number of pairs of Strings and integers and
creates one large string with each string repeated the number of times
indicated by the following integer.

Input: REPEAT "ha" 3 "_" 1 "lol" 2
Output: "hahaha lollol"

Development Strategy
To be able to use the Scanner and File classes in your code, you will need to include the following lines
of code at the beginning of your program (before your public class declaration):

import java.util.*;
import java.io.*;

Approach
Once again, this assignment will be best approached in smaller chunks. We recommend the following
strategy:

(1) Read and print the contents of a file: This is for viewing an interpreted YazLang program (even
though you haven’t interpreted one yet.)

(2) Execute commands to the console: When working on interpreting a YazLang program, work on
one command at a time, and test each one before moving on to the next. We suggest working
through the commands in the order they appear in the table above. We also suggest outputting
the commands to the console first to test your implementaiton of each command.

�

In the final
version of the
program, you
should not
print out the
interpretted
commands to
the console
when the user
types I in the
menu.

(3) Execute commands to a file: Modify the code to execute the YazLang commands from a file to
output to another output file.

(4) Menu/Reprompting: Add code to allow the user to select their mode (interpret, view, quit) and
to handle reprompting for missing input files.

Page 4 of 7

Hints
The following suggestions and hints may help you be more successful on this assignment:

• When reading input from a file, you may need to use a mixture of line-based and token-based
processing as shown in class and described in chapter 6 of the textbook.

• To check if a file exists, you should use methods from the File class. The textbook describes
an alternate technique for dealing with missing files using try/catch statements, but you should
NOT use this approach on this assignment.

• You may find the startsWith method of the String class useful for determining which type of
command you are processing.

• You may also find the replace method of the String class useful for replacing occurrences of one
character with another. For example, the code:

String str = "mississippi";
str = str.replace("s", "*");

will result in the string str containing the value "mi**i**ippi.

• If your program is generating InputMismatchException errors, you are likely reading the wrong
type of values from your Scanner (for example, using nextInt to read a string).

• If your program is generating NoSuchElementException errors, you are likely attempting to read
past the end of a file or line.

Debugging Tips
You may want to initially "hard-code" the input and output filenames; in other words, you may want to
just use fixed file names in your code rather than prompting the user to enter the file names. You may
also want to temporarily print extra "debug" text to the console while developing your program, such as
printing each command or argument as you read it. Be sure to remove this extra output before submitting
your program.

It is easier to debug this problem using a smaller input file with fewer commands and arguments. The
file simple.yzy on the course website has a short YazLang program that will be useful for testing your
program at first.

Implementation Guidelines
User Input/File Input
All console input should be processed using a Scanner and should be read using the nextLine method.
All file input should be processed using a File object and a Scanner as shown in class. File output
should be performed using a File and a PrintStream as shown in class.

When interpretting a YazLang program, your program should break the input into lines and then into
tokens using Scanner objects so that you can identify the command and look for all its arguments.

You may assume anytime a YazLang command is expected, it will be valid. Specifically, you may assume
that:

• each command will be on its own line

• the first word on each line will be a valid YazLang command (CONVERT, RANGE, or REPEAT)

• each command will have an appropriate number of arguments

• all arguments will be of the correct type and will meet the requirements outlined above

Page 5 of 7

Permitted Java Features
For this assignment, you are restricted to Java concepts covered in chapters 1 through 6 of the textbook.
In particular, you ARE NOT allowed to use arrays on this assignment.

Style Guidelines
You should follow all guidelines in the Style Guide and on the General Style Deductions page of the course
website. Pay particular attention to the following elements:

Capturing Structure
Your main method in this program may have more code than it has in previous assignments. In particular,
you may include a limited amount of output and some control flow constructs (e.g. a loop to drive the
menu) in main. However, your main method must remain a concise summary of your program’s structure,
and you must still utilize methods to both capture structure and eliminate redundancy.

Each method should perform a single, coherent task, and no method should do too much work. To
receive full credit, your program must include a separate method to execute each type of command, plus
four (4) other non-trivial method besides main. (Therefore, your program should have a total of at least
seven (7) non-trivial methods.)

�

Your program
must include a
single method
to process each
type of YazLang
command.Using Parameters and Returns

Your program should utilize parameters and return values effectively to produce a well-structured program
as described above. Your methods should not accept unnecessary or redundant parameters. In particular,
your program should include only a single Scanner connected to System.in, though you may have
additional Scanners as well. You can (and probably should) use objects (such as Scanner, File, or
PrintStream) as parameters and/or return values.

Code Aesthetics
Your code should be properly indented, make good use of blank lines and other whitespace, and in-
clude no lines longer than 100 characters. Your class, methods, and variables should all have mean-
ingful and descriptive names and follow the standard Java naming conventions. (e.g. ClassName,
methodOrVariableName). See the Style Guide for more information.

Commenting
Your code should include a header comment at the start of your program, following the same format
described in previous assignments. Your code should also include a comment at the beginning of each
method that describes that method’s behavior and any parameters or return value. You should also
include inline comments for any complex or confusing code to further explain what that code is doing.
Comments should be written in your own words (i.e. not copied and pasted from this spec) and header
comments should not include implementation details. See the Style Guide for examples.

Getting Help
If you find you are struggling with this assignment, make use of all the course resources that are available
to you, such as:

• Reviewing relevant lecture examples

• Reviewing this week’s section handouts

• Reading the textbook

• Visiting the IPL

• Posting a question on the message board

Page 6 of 7

https://courses.cs.washington.edu/courses/cse142/20su/homework/style2.pdf
https://courses.cs.washington.edu/courses/cse142/20su/style.html
https://courses.cs.washington.edu/courses/cse142/20su/homework/style2.pdf
https://courses.cs.washington.edu/courses/cse142/20su/homework/style2.pdf
https://courses.cs.washington.edu/courses/cse142/20su/calendar.html
https://us.edstem.org/courses/642

Academic Integrity
Remember that, while you are encouraged to use all resources at your disposal, including your classmates,
all work you submit must be entirely your own. In particular, you should NEVER look at a solution
to this assignment from another source (a classmate, a former student, an online repository, etc.). Please
review the full policy in the syllabus for more details, and ask the course staff if you are unclear on whether
or not a resource is OK to use.

Page 7 of 7

