
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 8
Lecture 8-3: toString, this

reading: 8.2 – 8.3

Copyright 2008 by Pearson Education
2

The toString method

reading: 8.6

self-check: #18, 20-21
exercises: #9, 14

Copyright 2008 by Pearson Education
3

Printing objects
� By default, Java doesn't know how to print objects:

Point p = new Point(10, 7);
System.out.println("p: " + p); // p: Point@9e8c34

� We can print a better string (but this is cumbersome):

System.out.println("p: (" + p.x + ", " + p.y + ")");

� We'd like to be able to print the object itself:
// desired behavior
System.out.println("p: " + p); // p: (10, 7)

Copyright 2008 by Pearson Education
4

The toString method
� tells Java how to convert an object into a String

� called when an object is printed/concatenated to a String:
Point p1 = new Point(7, 2);
System.out.println("p1: " + p1);

� If you prefer, you can write .toString() explicitly.
System.out.println("p1: " + p1.toString());

� Every class has a toString, even if it isn't in your code.
� The default is the class's name and a hex (base-16) number:

Point@9e8c34

Copyright 2008 by Pearson Education
5

toString syntax
public String toString() {

code that returns a suitable String;
}

� The method name, return, parameters must match exactly.
� Example:
// Returns a String representing this Point.
public String toString() {

return "(" + x + ", " + y + ")";
}

Copyright 2008 by Pearson Education
6

Client code
// This client program uses the Point class.
public class PointMain {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point(7, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.println("p1: " + p1);
System.out.println("p2: " + p2);

// compute/print each point's distance from the origin
System.out.println("p1's distance from origin: " + p1.distanceFromOrigin());
System.out.println("p2's distance from origin: " + p1.distanceFromOrigin());

// move p1 and p2 and print them again
p1.translate(11, 6);
p2.translate(1, 7);
System.out.println("p1: " + p1);
System.out.println("p2: " + p2);

// compute/print distance from p1 to p2
System.out.println("distance from p1 to p2: " + p1.distance(p2));

}
}

Copyright 2008 by Pearson Education
7

The keyword this

reading: 8.7

Copyright 2008 by Pearson Education
8

this
� this : A reference to the implicit parameter.

� implicit parameter: object on which a method is called

� Syntax for using this:

� To refer to a field:
this.field

� To call a method:
this.method(parameters);

� To call a constructor from another constructor:
this(parameters);

Copyright 2008 by Pearson Education
9

Variable names and scope
� Usually it is illegal to have two variables in the same scope

with the same name.
public class Point {

private int x;
private int y;
...

public void setLocation(int newX, int newY) {
x = newX;
y = newY;

}
}

� The parameters to setLocation are named newX and newY to
be distinct from the object's fields x and y.

Copyright 2008 by Pearson Education
10

Variable shadowing
� An instance method parameter can have the same name as

one of the object's fields:

// this is legal
public void setLocation(int x, int y) {

...
}

� Fields x and y are shadowed by parameters with same names.
� Any setLocation code that refers to x or y will use the

parameter, not the field.

Copyright 2008 by Pearson Education
11

Avoiding shadowing w/ this
public class Point {

private int x;
private int y;

...

public void setLocation(int x, int y) {
this.x = x;
this.y = y;

}
}

� Inside the setLocation method,
� When this.x is seen, the field x is used.
� When x is seen, the parameter x is used.

Copyright 2008 by Pearson Education
12

Multiple constructors
� It is legal to have more than one constructor in a class.

� The constructors must accept different parameters.

public class Point {
private int x;
private int y;

public Point() {
x = 0;
y = 0;

}

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

...
}

Copyright 2008 by Pearson Education
13

Constructors and this
� One constructor can call another using this:

public class Point {
private int x;
private int y;

public Point() {
this(0, 0); // calls the (x, y) constructor

}

public Point(int x, int y) {
this.x = x;
this.y = y;

}

...
}

