
CSE 142: Computer Programming I Autumn 2020
Take-home Assessment 5: Guessing Game due November 4, 2020, 11:59pm
This assignment will assess your mastery of the following objectives:

• Write a functionally correct Java program to produce specified console output.
• Write while loops to repeat code an indefinite number of times.
• Use Random to generate (pseudo)random numbers.
• Write and call methods that accept parameters and return values to manage information flow and

add structure to programs.
• Follow prescribed conventions for spacing, indentation, naming methods, and header comments.

Sample Output #1
<< Your custom haiku goes here >>

I'm thinking of a number between 1 and 100...
Your guess? 50
It's higher.
Your guess? 75
It's lower.
Your guess? 60
It's higher.
Your guess? 65
It's lower.
Your guess? 62
You got it right in 5 guesses!
Do you want to play again? y

I'm thinking of a number between 1 and 100...
Your guess? 28
You got it right in 1 guess!
Do you want to play again? YES

I'm thinking of a number between 1 and 100...
Your guess? 50
It's higher.
Your guess? 75
It's lower.
Your guess? 60
It's lower.
Your guess? 55
It's higher.
Your guess? 58
You got it right in 5 guesses!
Do you want to play again? no

Overall results:
Total games = 3
Total guesses = 11
Guesses/game = 3.7
Best game = 1

Program Behavior

�

Make sure that
the format and
structure of
your output
exactly match
the given logs.

This program allows the user to play a game in
which the program thinks of a random integer
and accepts guesses from the user until the user
guesses the number correctly. After each incor-
rect guess, the program will tell the user whether
the correct answer is higher or lower. As in as-
sessment 4, this program’s behavior is dependent
on input from a user (user input is underlined
in samples), but this program also includes ran-
dom values. The format and structure of your
output should exactly match the given logs, but
the specific output may vary based on random-
ness and/or user input. You can also use random
seeds (see below) to control the randomness and
test your output using the Mark button in Ed.

The program should begin with an introduction
in the form of a haiku. A haiku is a poem con-
sisting of three lines in a specific structure: the
first line has five syllables, the second line has
seven syllables, and the third line has five syl-
lables. The content of the haiku can be any
non-offensive text you like, but should somehow
relate to the game.

After the introduction is printed, the game be-
gins. In each game, the computer should choose
a secret random integer between 1 and a maxi-
mum, inclusive. (The default maximum is 100.)
The game should ask the user to guess a num-
ber until the chosen secret number is guessed.
After each incorrect guess, the program should
indicate whether the secret number is higher or
lower than the guess. Once the user enters the
correct number, the game ends and the program

should report how many guesses were needed. This output should be grammatically correct– that is, it
should print "1 guess" if the user guessed correctly on the first try, but

�

The guess that
was correct
counts in the
number of
guesses.

use the word "guesses" if more
than one try was required. The second game in Sample Output #1 shows what this should look like.

Page 1 of 5



After each game ends and the number of guesses is shown, the program should ask the user if they would
like to play again. If the user’s response starts with a lower- or upper-case Y (e.g. y, Y, yes, YES, Yup,
yessir, yeehaw), a new game should begin. If the user gives any other response (e.g. no, No, okay, 0,

�

A new secret
number should
be chosen for
each game.

certainly, hello), no new game should begin.

Once the user chooses not to play again, the program should print overall statistics about all games
played. Specifically, the total number of games, total guesses made in all games, average number of
guesses per game (rounded to the nearest tenth), and best game (i.e. fewest guesses needed to win any
one game) should be displayed. Your statistics must be correct for any number of games or guesses ≥ 1.
You may assume that no game will require one million or more guesses.

�

You should not
assume that the
user plays the
game optimally,
or that they use
any particular
strategy. For
example, a user
may enter the
same guess
more than once.

Sample Output #2
<< Your custom haiku goes here >>

I'm thinking of a number between 1 and 100...
Your guess? 50
It's lower.
Your guess? 25
It's higher.
Your guess? 35
It's lower.
Your guess? 30
It's higher.
Your guess? 32
It's lower.
Your guess? 31
You got it right in 6 guesses!
Do you want to play again? yAy

I'm thinking of a number between 1 and 100...
Your guess? 60
It's lower.
Your guess? 20
It's higher.
Your guess? 30
It's higher.
Your guess? 40
It's higher.
Your guess? 50
It's lower.
Your guess? 47
It's higher.
Your guess? 49
You got it right in 7 guesses!
Do you want to play again? nah

Overall results:
Total games = 2
Total guesses = 13
Guesses/game = 6.5
Best game = 6

Development Strategy
As on previous assessments, you will likely want
to approach the program one part at a time,
rather than trying to write most or all of the
program at once. We recommend the following
approach:

(1) Single game: Write and thoroughly test
a method to play a single game with num-
bers between 1 and 100.

(2) Constant: Modify your code to use a con-
stant (see below) to be able to change the
maximum possible secret number.

(3) Multiple games: Add code to ask the
user whether or not they want to play
again after a game finishes and start a new
game if their response begins with a y (see
above).

(4) Statistics: Add code to track and out-
put the overall statistics across multiple
games.

Debugging Tips
While testing your program, you may want to
add code to print the secret number before the
game begins. This will allow you to more easily
test that the higher/lower messages and statis-
tics are correct. You may also want to add addi-
tional output to display the state of certain val-
ues (e.g. number of guesses, current statistics)
at relevant points in the program.

�

Remember to
remove any
debugging
output before
submitting.If you wish to control the randomness to more

reliably test your program and exactly match our
sample logs, you can seed your Random object by

passing a parameter to the constructor, similar to the following:
Random rand = new Random(42);

Each sample log on the website indicates the seed that was used to produce that log. For more information
on seeding, see the Assessment 5 FAQ post on Ed.

Page 2 of 5

https://us.edstem.org/courses/2542/discussion/162466


Hints
The following suggestions and hints may help you be more successful on this assessment:

• You will likely want to use while loops to control the repetition in your program. Remember that
while loops are best for indefinite loops when you do not know how many times the loop will
execute.

• You MUST NOT define a method that calls itself, or a pair of methods that call each other, to
achieve repetition. This approach (called recursion) is difficult to get right and is not allowed in
CSE 142.

• You may find it useful to review fencepost loops and sentinel loops in section 5.2 of the textbook.
• If your program is generating InputMismatchException errors, you are likely reading the wrong

type of values from your Scanner (for example, using nextInt to read text).
• As on assessment 4, you will need to round certain parts of your output. You should round only for

output purposes, not during any calculations. You should use a rounding method such as the one
shown in lecture and used on assessment 4. DO NOT round using System.out.printf.

• Output that needs to be aligned (such as the equals signs in the statistics) should be aligned using
spaces, NOT tabs (\t). Tabs can have different widths on different computers and might result in
incorrect output on our grading system.

Sample Single Game
I'm thinking of a number between 1 and 100...
Your guess? 50
It's lower.
Your guess? 25
It's higher.
Your guess? 48
It's lower.
Your guess? 46
You got it right in 4 guesses!

Implementation Guidelines
Required Methods
To recieve full credit, your program is required
to include the following methods:

(1) A method to play a single game
(2) A method to report all overall statistics

Each of these methods must perform only the
tasks indicated. Specifically, your single game method (1) must not play multiple games or ask the user
to play again; and your statistics method (2) must not play any games or take any user input. (See the
sample output above for what playing a single game might look like.) You may (and likely will) have
additional methods beyond these two.

User Input
This program requires you to process user input, which you must do using a Scanner. All text input
should be read using the next method in the Scanner class, not the nextLine method.

You may assume the user always enters valid input. Specifically, you may assume that:

• the user will always enter a value of the correct type
• the user will always enter a single word when asked to play again
• all guesses will be integers in the expected range (i.e. at least 1 and no more than the current

maximum)
�

You should
NOT make any
assumptions
about input not
specified here.

Class Constant
The minimum possible secret number for a game will always be 1, but the maximum value should be
declared as a constant. The default maximum will be 100, but this value should be able to be easily
changed. Sample Output #3 below shows a sample execution with the a maximum secret number of

Page 3 of 5



5. See the course website and the for additional example logs with alternate values for the constant.
The Mark button in Ed will test your program with different constant values. To ensure our testing and
grading scripts work correctly, you must name your constant MAX_VALUE. In addition, please set the value
of the constant to 100 before submitting your work.

Permitted Java Features
For this assessment, you are restricted to Java concepts covered in chapters 1 through 5 of the textbook.
In particular, you MUST use the Scanner class to accept user input and the Random class to generate
random numbers.

Sample Output #3, constant = 5
<< Your custom haiku goes here >>

I'm thinking of a number between 1 and 5...
Your guess? 2
It's higher.
Your guess? 4
It's lower.
Your guess? 3
You got it right in 3 guesses!
Do you want to play again? yuppers

I'm thinking of a number between 1 and 5...
Your guess? 3
It's higher.
Your guess? 5
You got it right in 2 guesses!
Do you want to play again? Nah

Overall results:
Total games = 2
Total guesses = 5
Guesses/game = 2.5
Best game = 2

Code Quality Guidelines
In addition to producing the desired behavior, your
code should be well-written and meet all expecta-
tions described in the grading guidelines and the
Code Quality Guide. For this assessment, pay par-
ticular attention to the following elements:

Capturing Structure
Your main method in this program may have more
code than it has in previous assessments. In par-
ticular, you may include a limited amount of out-
put and some control flow constructs (e.g. a loop
to play multiple games) in main. However, your
main method must remain a concise summary of
your program’s structure, and you must still utilize
methods to both capture structure and eliminate
redundancy.

Using Parameters and Returns
Your program should utilize parameters and return
values effectively to produce a well-structured pro-
gram as described above. Your methods should

not accept unnecessary or redundant parameters. In particular, your program should include only a single
Scanner and a single Random which are passed as parameters to all required methods. You should NOT
declare either of these objects as a constant.

Code Aesthetics
Your code should be properly indented, make good use of blank lines and other whitespace, and in-
clude no lines longer than 100 characters. Your class, methods, variables, and constant should all have
meaningful and descriptive names and follow the standard Java naming conventions. (e.g. ClassName,
methodOrVariableName, CONSTANT_NAME) See the Code Quality Guide for more information.

Commenting
Your code should include a header comment at the start of your program, following the same format
described in previous assessments. Your code should also include a comment at the beginning of each
method that describes that methods behavior. Method comments should also explicitly name and de-
scribe all parameters to that method and describe the method’s return value (if it has one). Comments
should be written in your own words (i.e. not copied and pasted from this spec) and should not include
implementation details (such as describing loops or expressions included in the code). See the Code
Quality Guide for examples and more information.

Page 4 of 5

https://courses.cs.washington.edu/courses/cse142/20au/homework.html#a5guessinggame
https://courses.cs.washington.edu/courses/cse142/20au/syllabus.html#takehomeassessmentgrading
https://courses.cs.washington.edu/courses/cse142/20au/quality.html
https://courses.cs.washington.edu/courses/cse142/20au/quality.html
https://courses.cs.washington.edu/courses/cse142/20au/quality.html#commentingyourcode
https://courses.cs.washington.edu/courses/cse142/20au/quality.html#commentingyourcode


Running and Submitting
You can run your Guessing Game program by clicking the "Run" button in Ed. This will compile and
execute your code and show you any errors, or the output of your program if it runs correctly. If you believe
your output is correct, you can submit your work by clicking the "Mark" button in the Ed assessment.
You will see the results of some automated tests along with tentative grades. These grades are not
final until you have received feedback from your TA.

You may submit your work as often as you like until the deadline; we will always grade your most recent
submission. Note the due date and time carefully—work submitted after the due time will not be
accepted.

Getting Help
If you find you are struggling with this assessment, make use of all the course resources that are available
to you, such as:

• Reviewing relevant examples from lessons, section, and lab
• Reading the textbook
• Visiting office hours
• Posting a question on the message board

Collaboration Policy
Remember that, while you are encouraged to use all resources at your disposal, including your classmates,
all work you submit must be entirely your own. In particular, you should NEVER look at a solution
to this assessment from another source (a classmate, a former student, an online repository, etc.). Please
review the full policy in the syllabus for more details and ask the course staff if you are unclear on whether
or not a resource is OK to use.

Reflection
In addition to your code, you must submit answers to short reflection questions. These questions will help
you think about what you learned, what you struggled with, and how you can improve next time. The
questions are given in the file GuessingGameReflection.txt in the Ed assessment; type your responses
directly into that file.

Page 5 of 5

https://us.edstem.org/courses/2542/lessons/
https://courses.cs.washington.edu/courses/cse142/20au/staff.html
https://us.edstem.org/courses/2542/discussion
https://courses.cs.washington.edu/courses/cse142/20au/syllabus.html#collaborationandacademicconduct

