
CSE 142: Computer Programming I Autumn 2020
Take-home Assessment 3: Café Wall due October 20, 2020, 11:59pm
This assignment will assess your mastery of the following objectives:

• Write a functionally correct Java program to produce specified graphical output.
• Write for loops, including nested loops, to repeat code and manage control flow.
• Write and call methods that accept parameters to perform generalized tasks.
• Use class constants to represent and modify important values in a program.
• Follow prescribed conventions for spacing, indentation, naming methods, and header comments.

Program Behavior
Part A: Doodle
The first part of your assessment is to write a program that uses DrawingPanel to produce an image of
your choice. Your program can produce any image you like, with the following restrictions:

• The image should not include hateful, offensive, or otherwise inappropriate images.
• The image must be at least 100×100 pixels and must contain at least three distinct shapes and at

least two distinct colors.

�

Shapes need
not be unique.
For example,
three sepa-
rate rectangles
count as three
distinct shapes.

• The image must not be substantially similar to your solution for Part B, consist entirely of reused
Part B code, or be substantially similar to a related CSE 142 assignments from a previous quarter
or any examples from class.

• The code must successfully compile and run, and must not enter an infinite loop.
• The code must not use material beyond Supplement 3G of the textbook.

This part of the assessment will only contribute to the Behavior dimension grade. It will not factor in to
grading on the other dimensions.

Part B: Café Wall
The second part of your assessment is to produce an image that demonstrates what is known as the Café
Wall illusion. Your program should produce the following image:

Page 1 of 5

http://en.wikipedia.org/wiki/Caf%C3%A9_wall_illusion
http://en.wikipedia.org/wiki/Caf%C3%A9_wall_illusion


This image is drawn on a 650×400 pixel DrawingPanel with a Color.GRAY background. The image
consists of four grids made up of rows, along with two stand-alone rows. Each row consists of pairs of
black and white boxes, with a blue ’X’ drawn over each black box. Each grid consists of pairs of rows,
with the second row in each pair offset to the right by a certain number of pixels (potentially zero). Each
grid is also a square; that is, the number of row pairs in the grid is equal to the number of box pairs in
each row of that grid.

The overall image consists of six components (two stand-alone rows and four grids). Thse components
are labeled in the image below. The properties of each component are as follows:

Rows
Label Position Box Pairs Box Size

A (upper left) (0, 0) 4 20
B (middle left) (50, 70) 5 30

�

Since each grid
is a square,
the number of
row pairs is the
same as the
number of box
pairs.

Grids
Label Position Row Pairs Box Size Offset

C (upper right) (400, 20) 2 35 35
D (lower left) (10, 150) 4 25 0

E (lower middle) (250, 200) 3 25 10
F (lower right) (425, 180) 5 20 10

The second row in each pair within a grid is offset to the right by a specified amount. For example, in
grid D (the lower left), the offset is zero, so the rows are perfectly aligned. In grid C (the upper right),
the offset is the same as the size of each box, giving a "checkerboard"-like appearance.

�

The mortar is a
space between
the rows, not
a separate
component you
need to draw.

In each grid, the rows are separated vertically by a small amount, allowing the gray background to show.
(This separation is what triggers the illusion.) We will refer to this separation as "mortar." By default,
your image should use 2 pixels of mortar. However, we should be able to change the size of the mortar
by changing a single value and recompiling your program. See below for more details.

Page 2 of 5



You can use the Check button in Ed to verify the correctness of your output for various values of the size
constant. This feature will show you the number of pixels that are different between your output and the
expected output, and will highlight the specific pixels that differ. If you are running your code in Ed, you
should be able to get a perfect match.

�

If you have
only a few
pixels difference
around the
edges of figures,
check the order
in which you
are drawing the
parts of the
image.

Development Strategy
As on Assessment 2, we recommend you approach the program in stages, as follows:

(1) Single row: Write a method to produce a single row of black and white boxes at a specific position.
(2) Parameterized rows by position: Modify your row method to be able to produce a row with of

box pairs at any position.
(3) Parameterized rows by number and size: Modify your row method to be able to produce a row

with any number of box pairs of any size.
(4) Single grid: Once your row method completely works, write a method that produces a single grid

by calling your row method.
(5) Parameterized grids: Modify your grid method to be able to produce a grid with any number of

row pairs of any size boxes and with any offset.

�

You do not
need to worry
about produc-
ing rows with
an odd number
of boxes, grids
with an odd
number of rows,
or rectangular
grids.

(6) Mortar: Once you are able to produce any grid, add your constant (see below) so the size of the
mortar can be changed.

Implementation Guidelines
Like all CSE 142 assessments, Part B of this assessment will be graded on all four dimensions defined in
the syllabus. Be sure to adhere to the following guidelines:

Required methods/structure
For this assessment, your program is required to utilize the following structure:

(1) Your program must include a method to draw a single row at a time. This method should use
parameters so that it can produce any of the required rows in the final image.

�

Your program
must have at
least these
two meth-
ods, though
you may have
more. Your grid
method must
call your row
method.

(2) Your program must also include a single method to draw a grid, which must be acheived by calling
the row method described in (1).

Both your row method and your grid method should make use of for loops to produce each grid/row
from its component rows/boxes.

Changing mortar with a class constant
As described above, your program should be able to be easily changed to alter the mortar size. To achieve
this, your program should include one (and only one) class constant that represents the size of the mortar.
(The default mortar size is 2.) The size of the mortar should be able to be altered by changing only the
value of the constant. To ensure our testing and grading scripts work correctly, you must name your
constant MORTAR.

�

Make sure you
declare your
constant exactly
right, using
the keywords
public static
final.

The course web site will contain files that show you the expected output if your mortar constant is changed
to 1 instead of 2. You can use the Check button in Ed to test each value for the constant. Check will
test based on which value you have in your code, whereas Mark will test both values.

Permitted Java Features
For this assessment, you are restricted to Java concepts covered in chapters 1 through 3 and supplement
3G of the textbook. In particular, you MUST use for loops and parameters, and you may not use if or
if-else statements.

Page 3 of 5

https://courses.cs.washington.edu/courses/cse142/20au/syllabus.html#takehomeassessmentgrading


Code Quality Guidelines
In addition to producing the desired behavior, your code should be well-written and meet all expectations
described in the grading guidelines and the Code Quality Guide. For this assessment, pay particular
attention to the following elements:

Capturing Structure
Your program must use the method structure described above, though you may include additional methods
if you like. As always, your main method should be a concise summary of the program and you should
not have any trivial methods.

Using Parameters
Your program should utilize parameters to define generalized methods that can be used to create var-
ious similar results. In addition, your methods should not accept any unncessary parameters. For this
assessment, a parameter is considered unncessary if its value is unused, is always the same as the value
as another parameter, or can be directly computed from the values of other parameters.

Code Aesthetics
Your code should be properly indented, make good use of blank lines and other whitespace, and in-
clude no lines longer than 100 characters. Your class, methods, variables, and constant should all have
meaningful and descriptive names and follow the standard Java naming conventions. (e.g. ClassName,
methodOrVariableName, CONSTANT_NAME) See the Code Quality Guide for more information.

Commenting
Your code should include a header comment at the start of your program, following the same format
described in previous assessments. Your code should also include a comment at the beginning of each
method that describes that methods behavior. Method comments should also explicitly name and describe
all parameters to that method. Comments should be written in your own words (i.e. not copied and pasted
from this spec) and should not include implementation details (such as describing loops or expressions
included in the code). See the Code Quality Guide for examples and more information.

Running and Submitting
You can run your Café Wall program by clicking the "Run" button in Ed. This will compile and execute
your code and show you any errors, or the output of your program if it runs correctly. Clicking the "Check"
button will run your Café Wall program and show you differences from the expected output, and will also
run your Doodle program. If you believe your output is correct, you can submit your work by clicking
the "Mark" button in the Ed assessment. You will see the results of some automated tests along with
tentative grades. These grades are not final until you have received feedback from your TA.

You may submit your work as often as you like until the deadline; we will always grade your most recent
submission. Note the due date and time carefully—work submitted after the due time will not be
accepted.

Getting Help
If you find you are struggling with this assessment, make use of all the course resources that are available
to you, such as:

• Reviewing relevant examples from lessons, section, and lab
• Reading the textbook
• Visiting office hours
• Posting a question on the message board

Page 4 of 5

https://courses.cs.washington.edu/courses/cse142/20au/syllabus.html#takehomeassessmentgrading
https://courses.cs.washington.edu/courses/cse142/20au/quality.html
https://courses.cs.washington.edu/courses/cse142/20au/quality.html
https://courses.cs.washington.edu/courses/cse142/20au/quality.html#commentingyourcode
https://us.edstem.org/courses/2542/lessons/
https://courses.cs.washington.edu/courses/cse142/20au/staff.html
https://us.edstem.org/courses/2542/discussion


Collaboration Policy
Remember that, while you are encouraged to use all resources at your disposal, including your classmates,
all work you submit must be entirely your own. In particular, you should NEVER look at a solution
to this assessment from another source (a classmate, a former student, an online repository, etc.). Please
review the full policy in the syllabus for more details and ask the course staff if you are unclear on whether
or not a resource is OK to use.

Reflection
In addition to your code, you must submit answers to short reflection questions. These questions will
help you think about what you learned, what you struggled with, and how you can improve next time.
The questions are given in the file CafeWallReflection.txt in the Ed assessment; type your responses
directly into that file.

Page 5 of 5

https://courses.cs.washington.edu/courses/cse142/20au/syllabus.html#collaborationandacademicconduct

