
CSE 142: Computer Programming I Autumn 2020
Take-home Assessment 2: Space Needle due October 13, 2020, 11:59pm
This assignment will assess your mastery of the following objectives:

• Write a functionally correct Java program to produce specified console output.
• Write arithmetic expressions in Java.
• Write for loops, including nested loops, to repeat code and manage control flow.
• Use class constants to represent and modify important values in a program.
• Follow prescribed conventions for spacing, indentation, naming methods, and header comments.

Expected Output (size 4)

||
||
||
||

__/||__
__/:::||:::__

__/::::::||::::::__
__/:::::::::||:::::::::__
|""""""""""""""""""""""""|
/\/\/\/\/\/\/\/\/\/\//

/\/\/\/\/\/\/\/\//
/\/\/\/\/\/\//

/\/\/\/\//
||
||
||
||

%%		%%
%%		%%
%%		%%
%%		%%
%%		%%
%%		%%
%%		%%
%%		%%
%%		%%
%%		%%
%%		%%
%%		%%
%%		%%
%%		%%
%%		%%
%%		%%
__/||__

__/:::||:::__
__/::::::||::::::__

__/:::::::::||:::::::::__
|""""""""""""""""""""""""|

Program Behavior
Part A: ASCII Art
The first part of your assessment is to write a program that pro-
duces any text art (sometimes called "ASCII art") picture you like.
Your program can produce any picture you like, with the following
restrictions:

• The picture should be your own creation, not an ASCII image
you found on the Internet or elsewhere.

• The picture should not include hateful, offensive, or other-
wise inappropriate images.

• The picture should consist of between 3 and 200 lines of
output, with no more than 100 characters per line.

• The picture must not be substantially similar to your solution
for Part B, consist entirely of reused Part B code, or be
substantially similar to a related CSE142 assignments from
a previous quarter.

• The code must use at least one for loop or static method
but should not contain infinite loops.

• The code must not use material beyond Ch. 3 of the text-
book.

This part of the assessment will only contribute to the Behavior
dimension grade. It will not factor in to grading on the other
dimensions.

Part B: Space Needle
�

As on assess-
ment 1, you
must exactly
match the out-
put.

The second part of your assessment is to produce a specific text
figure that is supposed to look like Seattle’s Space Needle. Your
program should exactly reproduce the format of the output to the
left, including characters and spacing. The Mark button in Ed will
be helpful in confirming you’ve produced the correct output.

�

You should be
able to change
a single value
at one point
in the code to
scale the figure.

In addition to producing the default Space Needle shown below,
your program will need to be able to be easily modified to produce
similar images of different sizes. You will still only turn in one
program, and your program will only produce one size of output

on any given run. However, we should be able to make a single change to your code and recompile to
produce a different size. See below for more details.

Page 1 of 4

https://en.wikipedia.org/wiki/Space_Needle

Development Strategy
Since this is a more complex program, we suggest you approach the program in stages rather than trying
to implement everything at once. We specifically recommend following these steps:

(1) Tables: Utilize loop tables as demonstrated in class to find the patterns and expressions for repeated
sequences of characters.

(2) Default size: Implement the code necessary to produce the Space Needle using the default size of
4. DO NOT think about other sizes yet.

(3) Scaling: Once your default size completely works, add your constant (see below) and modify your
code so the output can be scaled to different sizes.

Expected Output (size 3)

||
||
||

__/||__
__/:::||:::__

__/::::::||::::::__
|""""""""""""""""""|
/\/\/\/\/\/\/\//

/\/\/\/\/\//
/\/\/\//

||
||
||

%		%
%		%
%		%
%		%
%		%
%		%
%		%
%		%
%		%

__/||__
__/:::||:::__

__/::::::||::::::__
|""""""""""""""""""|

Implementation Guidelines
Like all CSE 142 assessments, Part B of this assessment will be graded
on all four dimensions defined in the syllabus. Be sure to adhere to the
following guidelines:

Using for loops
One way to write a Java program to draw this figure would be to write
a System.out.println statement that prints each line of the figure.
However, this solution would be redundant and inflexible. Instead, you
are required to use for loops to create a more generalized version of the
program. Specifically, in lines that have repeated patterns of characters
that vary in number from line to line, your code should print the lines
and character patterns using nested for loops. You may find it helpful to
write pseudocode and tables to understand the patterns, as described in
the textbook and lecture.

Scaling with a class constant
�

Be sure to
name your
constant SIZE
or you won’t be
able to pass our
tests!

As described above, your program should be able to be easily changed
to produce a figure of a different size. For example, a Space Needle of
size 3 is shown to the left. To achieve this, your program should include
one (and only one) class constant that represents the size of the figure.
(The default size of the figure is 4.) To ensure our testing and grading
scripts work correctly, you must name your constant SIZE. Throughout
your program, any values that are related to the size of the figure should
refer to this constant so that a different size of figure can be produced by
changing only the value of the constant. Your program should work
correctly for any size greater than or equal to 2.

�

The height
of the Space
Needle’s body
grows with the
square of the
figure’s size.
For example,
in our size 4
default, the
body is 16
(4 x 4) lines
tall.

The course website and Ed lesson will contain files that show you the expected output if your size constant
is changed to various other values. You can use the Mark button in Ed to verify the correctness of your
output for various values of the size constant.

Permitted Java Features
For this assessment, you are restricted to Java concepts covered in chapters 1 and 2 of the textbook. In
particular, you MUST use for loops and class constants (see above) and you may not use parameters.
You also still may not use the \n escape sequence.

Page 2 of 4

https://courses.cs.washington.edu/courses/cse142/20au/syllabus.html#takehomeassessmentgrading
https://courses.cs.washington.edu/courses/cse142/20au/assessments.html#assessment2spaceneedle

Code Quality Guidelines
In addition to producing the desired behavior, your code should be well-written and meet all expectations
described in the grading guidelines and the Code Quality Guide. For this assessment, pay particular
attention to the following elements:

Capturing Structure
�

Try to iden-
tify the large
chunks of the
output and
write a method
for each, as in
the tapestry
example from
lecture.

As in assessment 1, you should use static methods to accurately capture the structure of the output in
your program. In particular, your main method should be a concise summary of the program and reflect
the structure of the figure being produced. Your program should not include any System.out.println
or System.out.print statements or any for loops in main.

Reducing Redundancy
You should continue to reduce redundancy as much as possible in your program by making good use of
static methods. Specifically, you should not have any redundant code to produce the same full line of
output. Instead, use methods to remove this redundancy. Similar to assessment 1, this only applies to
full-line redundancy. You are not expected to deal with partial-line redundancy, such as the two groups
of colons in this line of output:

�

This will result
in some redun-
dant code. This
is OK, but only
if that code
is producing
partial-line re-
dundancy as
described here.
All other re-
dundant code
should be fixed.

__/::::::||::::::__

Code Aesthetics
Your code should be properly indented, make good use of blank lines and other whitespace, and in-
clude no lines longer than 100 characters. Your class, methods, variables, and constant should all have
meaningful and descriptive names and follow the standard Java naming conventions. (e.g. ClassName,
methodOrVariableName, CONSTANT_NAME) See the Code Quality Guide for more information.

Commenting
Your code should include a header comment at the start of your program, following the same format
described in assessment 1. Your code should also include a comment at the beginning of each method
that describes that methods behavior. Comments should be written in your own words (i.e. not copied
and pasted from this spec) and should not include implementation details (such as describing loops or
expressions included in the code). See the Code Quality Guide for examples and more information.

Getting Help
If you find you are struggling with this assessment, make use of all the course resources that are available
to you, such as:

• Reviewing relevant examples from lessons, section, and lab
• Reading the textbook
• Visiting office hours
• Posting a question on the message board

Collaboration Policy
Remember that, while you are encouraged to use all resources at your disposal, including your classmates,
all work you submit must be entirely your own. In particular, you should NEVER look at a solution
to this assessment from another source (a classmate, a former student, an online repository, etc.). Please
review the full policy in the syllabus for more details and ask the course staff if you are unclear on whether
or not a resource is OK to use.

Page 3 of 4

https://courses.cs.washington.edu/courses/cse142/20au/syllabus.html#takehomeassessmentgrading
https://courses.cs.washington.edu/courses/cse142/20au/quality.html
https://courses.cs.washington.edu/courses/cse142/20au/quality.html
https://courses.cs.washington.edu/courses/cse142/20au/quality.html#commentingyourcode
https://us.edstem.org/courses/2542/lessons/
https://courses.cs.washington.edu/courses/cse142/20au/staff.html
https://us.edstem.org/courses/2542/discussion
https://courses.cs.washington.edu/courses/cse142/20au/syllabus.html#collaborationandacademicconduct

Reflection
In addition to your code, you must submit answers to short reflection questions. These questions will help
you think about what you learned, what you struggled with, and how you can improve next time. The
questions are given in the file SpaceNeedleReflection.txt in the Ed assessment; type your responses
directly into that file.

Running and Submitting
You can run your program by clicking the "Run" button in Ed. This will compile and execute your code
and show you any errors, or the output of your program if it runs correctly. If you believe your output is
correct, you can submit your work by clicking the "Mark" button in the Ed assessment. You will see the
results of some automated tests along with tentative grades. This grade is not final until you have
received feedback from your TA.

You may submit your work as often as you like until the deadline; we will always grade your most recent
submission. Note the due date and time carefully—work submitted after the due time will not be
accepted.

Page 4 of 4

