Robot-world physical interactions: Challenges, Solutions, and Research directions

<u>Tapo</u>mayukh Bhattacharjee Research Associate

Personal Robotics Lab Computer Science and Engineering **University of Washington**

Many slides courtesy of Siddhartha S. Srinivasa

Manipulation

Easy?

What's easy? What's hard?

Hard!

The Sense-Plan-Act Paradigm under Uncertainty

HERB: Home Exploring Robot Butler

A Mobile Manipulation Testbed Built by PRL

Personal Robotics Lab

Physical Manipulation

Geometric Search

Physics-Based Manipulation

Manipulation under Uncertainty

Physics-Based Manipulation

Manipulation under Uncertainty

Nonprehensile Whole Arm Rearrangement Planning on Physics Manifolds

Jennifer King, Joshua Haustein, Siddhartha Srinivasa, Tamim Asfour

Carnegie Mellon University Karlsruhe Institute of Technology

Manipulation with and around people

Physical Manipulation

Human-Robot Collaboration

Optimal Control

Legible Robot Motion Mathematical Models for Human Robot Interaction

Deceptive Robot Motion

Mathematical Models for Human Robot Interaction

Assistive Feeding

Autonomous Robot Feeding with Assistive Dexterous Arm (ADA)

Food Manipulation: Deformable objects

Food Manipulation: Deformable objects

Hard!

Hard!

Clutter: Contact is inevitable! What properties are relevant?

A Kitchen

We have some soft objects ..

And some hard objects

Also, during manipulation, objects can move

Can you perceive the properties using vision alone ?

What about the sense of touch? Whole-arm tactile sensing!

Autonomous Reaching

Advait Jain, Marc D. Killpack, Aaron Edsinger, and Charles C. Kemp, *Reaching in clutter with whole-arm tactile sensing*. The International Journal of Robotics Research, 2013.

Assistive Scenarios

Phillip M. Grice, Marc D. Killpack, Advait Jain, Sarvagya Vaish, Jeffrey Hawke, and Charles C. Kemp, *Whole-arm Tactile Sensing for Beneficial and Acceptable Contact During Robotic Assistance*, 13th International Conference on Rehabilitation Robotics (ICORR), 2013.

Some examples of Contact

An artificial capacitive-sensing skin

But, how to cover joints?

Stretchable Fabric-based Resistive Sleeve!

Stretchable Fabric Tactile Sensors

Tapomayukh Bhattacharjee, Advait Jain, Sarvagya Vaish, Marc D. Killpack, and Charles C. Kemp, Tactile Sensing over Articulated Joints with Stretchable Sensors, IEEE World Haptics Conference (WHC 2013), 2013

Rapid Haptic Mapping : Force

Rapid Haptic Mapping : Force + Vision

Dense Haptic map used for planning, one try

Tapomayukh Bhattacharjee, Ashwin A. Shenoi, Daehyung Park, James M. Rehg, and Charles C. Kemp, *Combining Tactile Sensing and Vision for Rapid Haptic Mapping*, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015.

Rapid Haptic Mapping : Force + Vision

Dense Haptic map

A Kitchen

We have some hard objects

But, can a robot distinguish material properties of the hard objects using force sensing ? 46

They may have different thermal properties ! What can we do with thermal sensing ? 46

Passive thermal sensing

A simple 1-DOF device as a testbed

What if we combine force and thermal ?

A Multimodal Sensing Module ...

Tapomayukh Bhattacharjee, Joshua Wade, Henry M. Clever, and Charles C. Kemp, *Generalizing In-Situ Multimodal Haptic Perception Performance during Rapid First Contact*, in preparation, 2017.

... attached to a Linear Actuator on a Mobile Robot...

Tapomayukh Bhattacharjee, Joshua Wade, Henry M. Clever, and Charles C. Kemp, *Generalizing In-Situ Multimodal Haptic Perception Performance during Rapid First Contact*, in preparation, 2017.

... perceived objects in a real home!

A mobile robot with a multimodal sensor touching various objects ...

Force and Thermal Sensing with a Fabric-Based Skin

Joshua Wade, **Tapomayukh Bhattacharjee**, Ryan D. Williams, and Charles C. Kemp, *A Force and Thermal Sensing Skin for Robots in Human Environments*, Under Review, 2017.

Figure 2: Arrangement of force sensing taxels on our multimodal skin prototype.

Figure 3: Multimodal taxel design.

Contact with Materials

Contact with Human Body : Bare Forearm

Contact with Human Body : Clothed Shoulder

Take-Home Message

- Robotics is highly interdisciplinary
- Physical interaction with the world is hard for robots!

Questions ?

Email: tapo@cs.washington.edu