Building Java Programs

Chapter 8

Object Behavior (Methods)
and Constructors, Encapsulation, this

reading: 8.2 - 8.3, 8.5 - 8.6

Copyright 2010 by Pearson Education

i

LK

p Pa

e
YOU KNOW THIS METAL I SPEND MOSTOF MY UFE| | BUT TODAY, THE PATTERN
RECTANGLE FULL OF PRESSING BUTTONS TO MAKE | | OF LIGHTS 1S ALL W/ROMG!
UTTLE LIGHTS? THE PATTERN OF LIGHTS OH GOD! TRY
CHANGE HOWEVER I WANT: { PRESSING m
K YEAH. sooNDs | | msnor RuTIonS!

O ‘ HELPING! (

A

Copyright 2010 by Pearson Education

e

Why objects?

* Primitive types don't model complex concepts well
» Costis a double. What's a person?
» Classes are a way to define new types
» Many objects can be made from those types

* Values of the same type often are used in similar ways
 Promote code reuse through instance methods

Copyright 2010 by Pearson Education

e

Recall: Instance methods

* instance method (or object method): Exists inside
each object of a class and gives behavior to each object.

public type name (parameters) |
statements;
}

» same syntax as static methods, but without static keyword

Example:

Pl B et
System.out.println ("HELLO THERE!") ;

}

Copyright 2010 by Pearson Education

el

i objects w/ method

* Each point object has its own copy of the distanceFromOrigin
method, which operates on that object's state: - Q

Point pl = new Point () ; v
st
eHER A A X ;7 3(22

PoOLEnb p2y —onewaw Poantaty .

S EvhE oG len b AR SRR SR e s S e AN e R e
p2. = 3: // this code can see pl's x and y
ey oy Y2 U DR S A N0 (R R R | S Y

pl.distanceFromOrigin() ;
p2 .distanceFromOrigin() ;

pZQ—»x4Y3

238l oR B Ve s s Tul oRt= i i isAms Un o s s ol DR as Do i Y s MR
// this code can see p2's x and y
rethrnyMabhiagr s sy

Copyright 2010 by Pearson Education

Kinds of methods

* accessor: A method that lets clients examine object
state.
o Examples: distance, distanceFromOrigin

» often has a non-voidreturn type

* mutator: A method that modifies an object's state.
e Examples: setlocation, translate

Copyright 2010 by Pearson Education

s

Printing objects

* By default, Java doesn't know how to print objects:

Point p = new Point ()

o R

o - e

S e e e e e e S)
// better, but cumbersome; P
SWASHa S e e e el s e R e s e
// desired behavior
System.out.println("p is " + p); // p

Copyright 2010 by Pearson Education

is Point@9e8c34

¥ (0.7
LI p.y + Myt

is (10, 7)

O oS

= toString method

tells Java how to convert an object into a String

Poamb vl e P e
System.out.println("pl: " + pl);

// the above code is really calling the following:
SyStemontE pranbbaitol vt s raSErang () 1

* Every class has a toString, even if it isn't in your code.
» Default: class's name @ object's memory address (base 16)

Point@9e8c34

Copyright 2010 by Pearson Education

/ '
toString syntax

b e ST Fe S e
code that returns a String representing this object;

» Method name, return, and parameters must match exactly.

 Example:

// Returns a String representing this Point.
puk hwe S s ma e s e avee i
return 1A (" _I_ X _I_ ", 1A _|_ y _|_ ") "’.

}

Copyright 2010 by Pearson Education

R m—

Variable names and scope

e Usually it is illegal to have two variables in the same
scope with the same name.

pUhweneika s s RognEw
TWahis e
W B HE e

public voild setLocation (int newX, 1nt newY) {
X = newX;
Yy = newy;

}

» The parametersto setLocationare named newX and newY to
be distinct from the object's fields x and y.

10
Copyright 2010 by Pearson Education

Variable shadowing

* An instance method parameter can have the same name
as one of the object's fields:

// this is legal

SrndevRe s sl W e el e e St e e i

}

» Fields x and y are shadowed by parameters with same names.
 Any setLocation code that refers to x or y will use the

parameter, not the field.

11

Copyright 2010 by Pearson Education

|

/,AV/C)Taing shadowing w/ this

publacvelass Posng o
INTRES
int y;

plublvesvord set oot on i nhaxs eyt eyl
this.x = x;
Ehis W= A

* Inside the setlLocation method,
e When this.x is seen, the field x is used.
» When x is seen, the parameter x is used.

12
Copyright 2010 by Pearson Education

/ 1
Ehis

* this : A reference to the implicit parameter.
o implicit parameter: object on which a method is called

e Syntax for using this:

» To refer to a field:
this.field

e To call a method:
this.method (parameters) ;

e To call a constructor from another constructor:
this (parameters) ;

13
Copyright 2010 by Pearson Education

o

Object initialization:

constructors

reading: 8.3

14

/ n n . = =
Initializing objects

e Currently it takes 3 lines to create a Point and initialize
It:

Pointp
pixiisa
pP.y = 8;

= new Point();

// tedious

» We'd rather specify the fields' initial values at the start:

Point p = new Point (3, 8); // desired; doesn't work (yet)

» We are able to this with most types of objects in Java.

15
Copyright 2010 by Pearson Education

J—
Constructors

» constructor: Initializes the state of new objects.

public type (parameters) {
statements;

}

» runs when the client uses the new keyword

* no return type is specified;
it implicitly "returns” the new object being created

» If a class has no constructor, Java gives it a default
constructor with no parameters that sets all fields to O.

Copyright 2010 by Pearson Education

16

/:/

J—
Constructor example

Pl e il R e
YrE e
TR

// Constructs a Point at the given x/y location.
public Point (int initialX, int initialY) ({

X = 1initialX;

y = initialyY;

pibli e veoidarranslate s dhos vt eloge o
e

Vo v hadv

17
Copyright 2010 by Pearson Education

|

/-
Tracing a constructor call

» What happens when the following call is made?

Pornt wiv =i mowabeon el vdg e

(O [
Y

AR o A R o o S e A o e W O A e A R N A e
X initialX;
Y initialY;

}

publrevvordi bransliabetinbindse ianbidsy)i
Ve b
Vo= dy;

18
Copyright 2010 by Pearson Education

/ o 1

J—
Common constructor bugs

1. Re-declaring fields as local variables ("shadowing"):

publiacvPoant tintvanrtial X, vanb i nat gl Yy
W e M
sty = e ey

}

» This declares local variables with the same name as the fields,
rather than storing values into the fields. The fields remain O.

2. Accidentally giving the constructor a return type:
bR e e b Y BN EAS B shat e e e R M e e e e e
X initialX;
% Tt gy

}
» This is actually not a constructor, but a method named Point

19
Copyright 2010 by Pearson Education

/:/

/- m
Client code, version 3

public class PointMain3 {
bubicvistobich vordamaintobrinog e raos)y
// create two Point objects
Point pl = new Point(5, 2);
Point p2 = new Point(4, 3);

// print each point
T e b R e M w o E
System ot printlinWplo i (Wb p2ig b NN e poay by .

// move p2 and then print it again
p2.translate (2, 4);

S e O D T T 2 e N R P2 S
}
}
OUTPUT:
R)
Pl)
pene

20
Copyright 2010 by Pearson Education

O oS

Multiple constructors

* A class can have multiple constructors.
» Each one must accept a unique set of parameters.

* Exercise: Write a Point constructor with no parameters
that initializes the point to (0, 0).

// Constructs a new point at (0, 0).
publhre Poirnb iy

Xl

YU

21
Copyright 2010 by Pearson Education

R m—

Multiple constructors

» It is legal to have more than one constructorin a class.
» The constructors must accept different parameters.

jodbi s e e e e i e e,
private 1nt x;
private int y;

public Point () {
0;
0;

x
Y
}

DHRH e e B A e (Y sl it e e s e C S e e e e s e e
Vdi g R S A
e e R

}

2
Copyright 2010 by Pearson Education

et |

/ 1
Constructors and this

* One constructor can call another using this:

public class Point {
private int x;
Do e

public Point () {
this (0, 0); // calls the (x, y) constructor

}

publte Point Cintix. v int gy of
this.x = x;
this.y = y;

23
Copyright 2010 by Pearson Education

/ m
Encapsulation

* encapsulation: Hiding implementation details of an
object from its clients.

» Encapsulation provides abstraction.
« Separates external view (behavior) from internal view (state)

» Encapsulation protects the integrity of an object's data.

(V]
Lew
T S R 4 re3
. 100 322k
E QI0

3
q" ‘ml’

40310 P
AUDID LTPUT

283394

4 Measure=jm

Regsistor Voltage .s&
Here Here !

Copyright 2010 by Pearson Education

24

J—
Private fields

» A field can be declared private.
» No code outside the class can access or change it.

private type name;

 Examples:

private int 1d;
private String name;

* Client code sees an error when accessing private fields:

PointMain.java:11l: x has private access in Point
sSystem:out . printin(pl dis (V" + pl.x '+ "o T dipl oy o+ D)y

A

Copyright 2010 by Pearson Education

25

/:/

/ o =
Accessing private state

* We can provide methods to get and/or set a field's value:

// A "read-only" access to the x field ("accessor")
Pille e e o N
et n e

}

// Allows clients to change the x field ("mutator")
public void setX (1nt newX) {
X = newx;

}

e Client code will look more like this:

System.out.println("pl: (" + pl.getX() + ", " + pl.get¥() + ")");
pl.setX(14) ;

26
Copyright 2010 by Pearson Education

;;”gg’————————_—— m m
Point class, version

// A Point object represents an (x, y) location.
publievelass Poimntig

private int x;

private int y;

public Point (int initialX, int initialY) {

x = initialX;
y = 1initialY;
}
public double distanceFromOrigin() {

refurn i Mabhi dge i Brse g ki
}

public int getX() {
return x;
}

public int getY¥Y () {
return y;
}

public void setLocation(int newX, int newY) {
X newX;
) newy;

}

pubilrerwoidivkransbatetinbdx vimbyvdyeyiid
DR AR o Y
e SR

X
Y

Copyright 2010 by Pearson Education

27

/:/

/- m
Client code, version 4

public class PointMainé {
public static void main(String[] args) {
// create two Point objects
I2{e iy ey ol bt o v P fath i e A I
Point p2 = new Point (4, 3);

// print each point
SygtemvountiprintinttplavitviiplrgeEX) et rplugaet Y (et
Systemviontaprintintpoer v pZiige e Xty ettt pZaget Y () b gt

// move p2 and then print it again
S st YRR A e N = (i
System.out.println ("p2: (" + p2.getX() + ", " + p2.get¥Y() + ")");

}

OUTPUT:

oA A oAy
Ot A Y S
PN s

28
Copyright 2010 by Pearson Education

/7 —

Benefits of encapsulation

* Provides abstraction between an object and its clients.

* Protects an object from unwanted access by clients.

» A bank app forbids a client to change an Account's balance.

* Allows you to change the class implementation. *

* Point could be rewritten to use polar coordinates
(radius r, angle 0), but with the same methods.

* Allows you to constrain objects' state (invariants).
« Example: Only allow points with non-negative coordinates.

Copyright 2010 by Pearson Education

\

29

