
CSE142 Sample Midterm

Summer 2019

 1. Expressions, 10 points. For each expression in the left-hand column,

 indicate its value in the right-hand column. Be sure to list a constant of

 appropriate type (e.g., 7.0 rather than 7 for a double, Strings in quotes,

 true and false for booleans).

 Expression Value

 --

 1 * 2 * 3 + (4 - 5) ________________

 28 % 4 + 18 % 5 % 5 + 9 ________________

 1000 * 2 + 18 / 2 / 2 * 2 ________________

 1 / 10.0 + "1" + 17 * 2 ________________

 0.25 * 2 - 0.5 + 1 / 2 ________________

2. Parameter Mystery, 12 points. Consider the following program.

public class ParameterMystery {

 public static void main(String[] args) {

 String green = "i";

 String am = "green";

 String ham = "sam";

 String i = "eggs";

 String eggs = "am";

 String sam = "ham";

 mystery(sam, i, am);

 mystery(ham, green, eggs);

 mystery(green, eggs, ham);

 mystery(i, sam, "green");

 }

 public static void mystery(String eggs, String ham, String green) {

 System.out.println("I do not like " + green + " " + eggs + " and " + ham);

 }

 }

 Write the output produced by this program in the box below.

 | |

 | |

 | |

 | |

 | |

 | |

 | |

 | |

 | |

 | |

 | |

 | |

 |___|

3. If/Else Simulation, 12 points. Consider the following method.

 public static void ifElseMystery(int one, int two) {

 if (one % two == 0) {

 one = one / two;

 }

 if (two > one) {

 two--;

 } else if (two == one) {

 one = one + 5;

 }

 System.out.println(one + " " + two);

 }

 For each call below, indicate what output is produced.

 Method Call Output Produced

 ifElseMystery(12, 45); _______________

 ifElseMystery(15, 5); _______________

 ifElseMystery(64, 8); _______________

 ifElseMystery(12, 12); _______________

 ifElseMystery(20, 7); _______________

 ifElseMystery(100, 5); _______________

4. While Loop Simulation, 12 points. Consider the following method:

 public static void whileMystery(int n) {

 int x = 1;

 int y = 1;

 while (n > 2) {

 x = x + y;

 y = x - y;

 n--;

 System.out.print(y + " ");

 }

 System.out.println(x);

 }

 For each call below, indicate what output is produced:

 Method Output Produced

 mystery(5); _______________

 mystery(3); _______________

 mystery(7); _______________

 mystery(0); _______________

5. Assertions, 15 points. You will identify various assertions as being either

 always true, never true or sometimes true/sometimes false at various points in

 program execution. The comments in the method below indicate the points of

 interest.

 public static int mystery(int x) {

 int y = 1;

 int z = 0;

 // Point A

 while (x > y) {

 // Point B

 z = z + x - y;

 x = x / 2;

 // Point C

 y = y * 2;

 // Point D

 }

 // Point E

 return z;

 }

Fill in the table below with the words ALWAYS, NEVER or SOMETIMES.

 x > y z > 0 y % 2 == 0

 +---------------------+---------------------+---------------------+

 Point A | | | |

 +---------------------+---------------------+---------------------+

 Point B | | | |

 +---------------------+---------------------+---------------------+

 Point C | | | |

 +---------------------+---------------------+---------------------+

 Point D | | | |

 +---------------------+---------------------+---------------------+

 Point E | | | |

 +---------------------+---------------------+---------------------+

6. Programming, 15 points. Write a static method called testFairCoin that takes a

 console Scanner as a parameter and prompts the user for a series of coin

 flips. The user will input one of three words: "heads" if they flip a heads,

 "tails" if they flip a tails, or "done" to stop entering flips. Your method

 should compute and output the percentage of times the user flipped heads, and

 return whether or not this sequence of flips seems to represent a fair coin.

 A coin is considered to be fair if the user inputs "heads" between 45 to 55

 percent of the time (inclusive).

 For example, suppose the following method calls were made:

 Scanner console = new Scanner(System.in);

 boolean result1 = testFairCoin(console);

 System.out.println();

 boolean result2 = testFairCoin(console);

 These calls would produce interactions like the following (user input bold and

 underlined):

 next flip? heads

 next flip? heads

 next flip? tails

 next flip? tails

 next flip? done

 was heads 50.0% of the time

next flip? tails

next flip? heads

next flip? tails

next flip? done

was heads 33.33333333333333% of the time

 In the first log, the user enters four flips: two of which are heads and two

 of which are tails. Then they enter "done" to stop entering flips. In the

 second log, the user enters three flips before quitting: one of which is heads

 and two of which are tails. After this code is executed, the variable result1

 (from the first log) is set to true because the first series of coin flips was

 heads 50 percent of the time, which is between the inclusive bounds of 45 to

 55 percent. The variable result2 (from the second log) would be set to false

 because the percentage of heads was not between 45 and 55. Notice that the

 coin flips are being entered by the user, not generated by the method; you

 should not use a Random object to solve this problem.

 You may assume that the user always enters at least one flip, and does not

 enter any input other than the three words described ("heads" or "tails" or

 "done"). You should not round the percentage of heads computed. You must

 exactly reproduce the format of these logs, though the values may be different

 based on user input.

 Write your solution to problem 6 on the next page.

Write your solution to problem 6 here:

7. Programming, 15 points. Write a static method called busyDay that takes an

 integer num and a Random object as parameters and schedules a series of random

 meetings. Your method should repeatedly generate meetings between 15 and 60

 minutes long (inclusive) until num meetings have been scheduled. After each

 meeting is generated, your method should print out the length of the new

 meeting and the total amount of meeting time scheduled so far. After all

 meetings have been scheduled, your method should print out the length of the

 longest scheduled meeting.

 For example, suppose the following calls were made:

 Random rand = new Random();

 busyDay(6, rand);

 These calls would produce output like the following:

Scheduled new 37-min meeting; total time now 0h 37m

Scheduled new 16-min meeting; total time now 0h 53m

Scheduled new 22-min meeting; total time now 1h 15m

Scheduled new 27-min meeting; total time now 1h 42m

Scheduled new 35-min meeting; total time now 2h 17m

Scheduled new 48-min meeting; total time now 3h 5m

Longest meeting was 48 minutes

 Suppose the following subsequent call is then made:

 busyDay(3, rand);

 This call would produce output like the following:

Scheduled new 30-min meeting; total time now 0h 30m

Scheduled new 60-min meeting; total time now 1h 30m

Scheduled new 17-min meeting; total time now 1h 47m

Longest meeting was 60 minutes

 Notice that the total meeting time is given in the format Xh Ym. You are not

 required to add extra zeroes if either the total hours or minutes are a single

 digit.

 You may assume that at least one meeting will be scheduled. You must exactly

 reproduce the format of these logs, though the values may be different due to

 randomness.

 Write your solution to problem 7 on the next page.

Write your solution to problem 7 here:

8. Programming, 9 points. Write a method called isMonotonic that takes in an

 integer n and a boolean incr as parameters. If incr is true, your method

 should return true if the digits in n are strictly increasing. If incr is

 false, your method should return true if the digits in n are strictly

 decreasing. In all other cases, your method should return false. If two

 adjacent digits are equal, the number is not considered to be either strictly

 increasing or strictly decreasing.

 Below are some sample calls to isMonotonic and their return values.

 Method Call Return Value Method Call Return Value

 ------------------------------------- ------------------------------------

 isMonotonic(0, true) true isMonotonic(8, false) true

 isMonotonic(11, true) false isMonotonic(12, false) false

 isMonotonic(21, true) false isMonotonic(22, false) false

 isMonotonic(29, true) true isMonotonic(642, false) true

 isMonotonic(1234, true) true isMonotonic(89, false) false

 isMonotonic(890, true) false isMonotonic(987, false) true

 isMonotonic(588, true) false isMonotonic(411, false) false

 You may assume that n is not negative. You may not use Strings or other

 objects to solve this problem.

 Write your solution to problem 8 on the next page.

Write your solution to problem 8 here:

