
Building Java Programs

Chapter 4
Lecture 4-2: Advanced if/else; Cumulative sum

reading: 4.2, 4.4 - 4.5



2

Logical operators

 Tests can be combined using logical operators:

 "Truth tables" for each, used with logical values p and q:

Operator Description Example Result

&& and (2 == 3) && (-1 < 5) false

|| or (2 == 3) || (-1 < 5) true

! not !(2 == 3) true

p q p && q p || q

true true true true

true false false true

false true false true

false false false false

p !p

true false

false true



3

Evaluating logical expressions
 Order of operations:

1. math

2. relational operators

3. logical operators

 Example:
5 * 7 >= 3 + 5 * (7 – 1) && 7 <= 11

5 * 7 >= 3 + 5 *    6    && 7 <= 11

35   >= 3 +    30       && 7 <= 11

35   >=    33           && 7 <= 11

true                && true

true

 This can be hard to read.  If you ever have an expression like 
this, consider adding more parentheses and storing 
intermediate results in variables.



4

Evaluating logical expressions
 Relational operators cannot be "chained" as in algebra

2 <= x <= 10

true  <= 10 (assume that x is 15)
Error!

 Instead, combine multiple tests with && or ||
2 <= x && x <= 10

true  &&  false

false



5



6

Logical questions
 What is the result of each of the following expressions?

int x = 42;

int y = 17;

int z = 25;

 y < x && y <= z

 x % 2 == y % 2 || x % 2 == z % 2

 x <= y + z && x >= y + z

 !(x < y && x < z)

 (x + y) % 2 == 0 || !((z - y) % 2 == 0)

 Answers: true, false, true, true, false

 Exercise: Write a program that prompts for information 
about an apartment and uses it to decide whether to rent 
it.



Advanced if/else

reading: 4.4 - 4.5



8

Factoring if/else code

 factoring: Extracting common/redundant code.

 Can reduce or eliminate redundancy from if/else code.

 Example:

if (a == 1) {

System.out.println(a);

x = 3;

b = b + x;

} else if (a == 2) {

System.out.println(a);

x = 6;

y = y + 10;

b = b + x;

} else {  // a == 3

System.out.println(a);

x = 9;

b = b + x;

}

System.out.println(a);

x = 3 * a;

if (a == 2) {

y = y + 10;

}

b = b + x;



9

The "dangling if" problem
 What can be improved about the following code?

if (x < 0) {

System.out.println("x is negative");

} else if (x >= 0) {

System.out.println("x is non-negative");

}

 The second if test is unnecessary and can be removed:

if (x < 0) {

System.out.println("x is negative");

} else {

System.out.println("x is non-negative");

}



10

if/else with return
// Returns the larger of the two given integers.

public static int max(int a, int b) {

if (a > b) {

return a;

} else {

return b;

}

}

 Methods can return different values using if/else

 Returning a value causes a method to immediately exit.

 All paths through the code must reach a return statement.



11

All paths must return
public static int max(int a, int b) {

if (a > b) {
return a;

}
// Error: not all paths return a value

}

 The following also does not compile.  Why not?

public static int max(int a, int b) {
if (a > b) {

return a;
} else if (b >= a) {

return b;
}

}

 The compiler thinks if/else/if code can skip all paths, even 

though mathematically it must choose one or the other.

 Solution here is to change else if to just else.



12

if/else, return question

 Write a method quadrant that accepts a pair of real 

numbers x and y and returns the quadrant for that point: 

 Example:  quadrant(-4.2, 17.3) returns 2

 If the point falls directly on either axis, return 0. 

x+x-

y+

y-

quadrant 1quadrant 2

quadrant 3 quadrant 4



13

if/else, return answer
public static int quadrant(double x, double y) {

if (x > 0 && y > 0) {

return 1;

} else if (x < 0 && y > 0) {

return 2;

} else if (x < 0 && y < 0) {

return 3;

} else if (x > 0 && y < 0) {

return 4;

} else {      // at least one coordinate equals 0

return 0;

}

}



Cumulative algorithms

reading: 4.2



15

Adding many numbers
 How would you find the sum of all integers from 1-5?

int sum = 1 + 2 + 3 + 4 + 5;

System.out.println("The sum is " + sum);

 What if we want the sum from 1 - 1,000?



16

Attempt at cumulative sum
 What is wrong with the following code?

for (int i = 1; i <= 1000; i++) {

int sum = 0;

sum += i;

}

System.out.println("The sum is " + sum);



17

Cumulative sum loop
int sum = 0;

for (int i = 1; i <= 1000; i++) {

sum += i;

}

System.out.println("The sum is " + sum);

 cumulative sum: A variable that keeps a sum in progress 

and is updated repeatedly until summing is finished.

 The sum in the above code represents a cumulative sum.

 Cumulative sum variables must be declared outside the loops 

that update them, so that they will still exist after the loop.



18

Cumulative product
 This cumulative idea can be used with other operators:

int product = 1;

for (int i = 1; i <= 20; i++) {

product = product * 2;

}

System.out.println("2 ^ 20 = " + product);

 How would we make the base and exponent adjustable?



19

Scanner and cumulative sum

 We can do a cumulative sum of user input:

Scanner console = new Scanner(System.in);

int sum = 0;

for (int i = 1; i <= 100; i++) {

System.out.print("Type a number: ");

sum = sum + console.nextInt();

}

System.out.println("The sum is " + sum);



20

Cumulative sum question
 Modify the Receipt program from Ch. 2.

 Prompt for how many people, and each person's dinner cost.

 Use static methods to structure the solution.

 Example log of execution:

How many people ate? 4

Person #1: How much did your dinner cost? 20.00

Person #2: How much did your dinner cost? 15

Person #3: How much did your dinner cost? 30.0

Person #4: How much did your dinner cost? 10.00

Subtotal: $75.0

Tax: $6.0

Tip: $11.25

Total: $92.25



21

Cumulative sum answer
// This program enhances our Receipt program using a cumulative sum.

import java.util.*;

public class Receipt2 {

public static void main(String[] args) {

Scanner console = new Scanner(System.in);

double subtotal = meals(console);

results(subtotal);

}

// Prompts for number of people and returns total meal subtotal.

public static double meals(Scanner console) {

System.out.print("How many people ate? ");

int people = console.nextInt();

double subtotal = 0.0; // cumulative sum

for (int i = 1; i <= people; i++) {

System.out.print("Person #" + i + 

": How much did your dinner cost? ");

double personCost = console.nextDouble();

subtotal = subtotal + personCost; // add to sum

}

return subtotal;

}

...



22

Cumulative answer, cont'd.
...

// Calculates total owed, assuming 8% tax and 15% tip

public static void results(double subtotal) {

double tax = subtotal * .08;

double tip = subtotal * .15;

double total = subtotal + tax + tip;

System.out.println("Subtotal: $" + subtotal);

System.out.println("Tax: $" + tax);

System.out.println("Tip: $" + tip);

System.out.println("Total: $" + total);

}

}



23

Putting it all together…
 Write a method countFactors that returns

the number of factors of an integer.

 countFactors(24) returns 8 because 

1, 2, 3, 4, 6, 8, 12, and 24 are factors of 24.

 Solution:

// Returns how many factors the given number has.

public static int countFactors(int number) {

int count = 0;

for (int i = 1; i <= number; i++) {

if (number % i == 0) {

count++;  // i is a factor of number

}

}

return count;

}


